Mostrar el registro sencillo del ítem

dc.contributor.authorKoverga A.A
dc.contributor.authorFlórez E
dc.contributor.authorJimenez-Orozco C
dc.contributor.authorRodriguez J.A.
dc.date.accessioned2022-09-14T14:34:08Z
dc.date.available2022-09-14T14:34:08Z
dc.date.created2021
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/7578
dc.descriptionHydrogenation reactions are involved in several processes in heterogeneous catalysis. Platinum is the best-known catalyst; however, there are limitations to its practical use. Therefore, it is necessary to explore alternative materials and transition metal carbides (TMCs) have emerged as potential candidates. We explore the possibility of using cheap TMCs as supports for a Pt monolayer, aiming to reduce the amount of the noble metal in the catalyst without a significant loss of its activity towards H2dissociation. Hence, analyzing H2dissociation from a fundamental point of view is a necessary step towards a further practical catalyst. By means of periodic DFT calculations, we analyze H2adsorption and dissociation on Pt/β-Mo2C and Pt/α-WC surfaces, as a function of hydrogen surface coverage (ΘH), resembling a more realistic model of a catalyst. H2dissociation rates were analyzed as a function of the reaction temperature. The results show that Pt/C-WC and Pt/Mo-Mo2C have a Pt-like behavior for H2dissociation atΘH> 1/2 ML. At a particular temperature of 298 K, Pt/C-WC and Pt/Mo-Mo2C have low energy barriers for H2eng
dc.description→ 2Heng
dc.description(0.13 and 0.11 eV, respectively), close to the value of Pt (0.06 eV). For the highest coverage,i.e. ΘH= 1, Pt/C-WC has a lower activation energy and a higher reaction rate than Pt. Finally, the H2dissociation rate is higher in Pt/Mo-Mo2C than in Pt when increasing the temperature above 298 K. Our results put Pt/C-WC and Pt/Mo-Mo2C under the spotlight as potential catalysts for H2dissociation, with a similar performance to Pt, paving the way for further experimental and/or theoretical studies, addressing the capability of Pt/TMC as practical catalysts in hydrogenation reactions. © the Owner Societies 2021.eng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85115995881&doi=10.1039%2fd1cp02974f&partnerID=40&md5=0a7acd6125f288e33dd4ef9d74cb10c1
dc.sourcePhysical Chemistry Chemical Physics
dc.titleSpot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1039/d1cp02974f
dc.subject.keywordActivation energyeng
dc.subject.keywordCarbideseng
dc.subject.keywordCatalysiseng
dc.subject.keywordCatalystseng
dc.subject.keywordGas adsorptioneng
dc.subject.keywordHydrogeneng
dc.subject.keywordHydrogenationeng
dc.subject.keywordPlatinum compoundseng
dc.subject.keywordPrecious metalseng
dc.subject.keywordReaction rateseng
dc.subject.keywordAlternative materialseng
dc.subject.keywordDissociation rateseng
dc.subject.keywordHydrogen adsorptioneng
dc.subject.keywordHydrogen dissociationeng
dc.subject.keywordHydrogenation reactionseng
dc.subject.keywordPeriodic DFT calculationeng
dc.subject.keywordPractical useeng
dc.subject.keywordSurface coverageseng
dc.subject.keywordTransition metals carbideseng
dc.subject.keyword]+ catalysteng
dc.subject.keywordDissociationeng
dc.relation.citationvolume23
dc.relation.citationissue36
dc.relation.citationstartpage20255
dc.relation.citationendpage20267
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationKoverga, A.A., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationJimenez-Orozco, C., Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.relation.referencesWilson, J.N., Otvos, J.W., Stevenson, D.P., Wagner, C.D., (1953) Ind. Eng. Chem., 45, pp. 1480-1487
dc.relation.referencesLevy, R.B., Boudart, M., (1973) Science, 181, pp. 547-549
dc.relation.referencesHwu, H.H., Chen, J.G., (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesKelly, T.G., Hunt, S.T., Esposito, D.V., Chen, J.G., (2013) Int. J. Hydrogen Energy, 38, pp. 5638-5644
dc.relation.referencesEsposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., (2012) J. Am. Chem. Soc., 134, pp. 3025-3033
dc.relation.referencesDaily Metal Prices, , https://www.dailymetalprice.com, accessed August 2021
dc.relation.referencesEsposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., (2010) Angew. Chem., Int. Ed., 49, pp. 9859-9862
dc.relation.referencesPoliti, J.R.DOSS., Viñes, F., Rodriguez, J.A., Illas, F., (2013) Phys. Chem. Chem. Phys., 15, p. 12617
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., (2020) ACS Catal., 10, pp. 6213-6222
dc.relation.referencesHeard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., (2016) ACS Catal., 6, pp. 3277-3286
dc.relation.referencesChristmann, K., Ertl, G., Pignet, T., (1976) Surf. Sci., 54, pp. 365-392
dc.relation.referencesSamson, P., Nesbitt, A., Koel, B.E., Hodgson, A., (1998) J. Chem. Phys., 109, pp. 3255-3264
dc.relation.referencesPoelsema, B., Lenz, K., Comsa, G., (2010) J. Condens. Matter Phys., 22, p. 304006
dc.relation.referencesLuntz, A.C., Brown, J.K., Williams, M.D., (1990) J. Chem. Phys., 93, pp. 5240-5246
dc.relation.referencesGee, A.T., Hayden, B.E., Mormiche, C., Nunney, T.S., (2000) J. Chem. Phys., 112, pp. 7660-7668
dc.relation.referencesKroes, G.-J., Díaz, C., (2016) Chem. Soc. Rev., 45, pp. 3658-3700
dc.relation.referencesLudwig, J., Vlachos, D.G., van Duin, A.C.T., Goddard, W.A., (2006) J. Phys. Chem. B, 110, pp. 4274-4282
dc.relation.referencesFerrin, P., Kandoi, S., Nilekar, A.U., Mavrikakis, M., (2012) Surf. Sci., 606, pp. 679-689
dc.relation.referencesOlsen, R.A., Kroes, G.J., Baerends, E.J., (1999) J. Chem. Phys., 111, pp. 11155-11163
dc.relation.referencesVincent, J.K., Olsen, R.A., Kroes, G.J., Baerends, E.J., (2004) Surf. Sci., 573, pp. 433-445
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., (2021) Electrochim. Acta, 368, p. 137598
dc.relation.referencesGreeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I., Nørskov, J.K., (2006) Nat. Mater., 5, pp. 909-913
dc.relation.referencesBjörketun, M.E., Bondarenko, A.S., Abrams, B.L., Chorkendorff, I., Rossmeisl, J., (2010) Phys. Chem. Chem. Phys., 12, p. 10536
dc.relation.referencesRekoske, J.E., Cortright, R.D., Goddard, S.A., Sharma, S.B., Dumesic, J.A., (1992) J. Phys. Chem., 96, pp. 1880-1888
dc.relation.referencesCortright, R.D., Goddard, S.A., Rekoske, J.E., Dumesic, J.A., (1991) J. Catal., 127, pp. 342-353
dc.relation.referencesSalomonsson, A., Eriksson, M., Dannetun, H., (2005) J. Appl. Phys., 98, p. 014505
dc.relation.referencesPoelsema, B., Verheij, L.K., Comsa, G., (1985) Surf. Sci., 152-153, pp. 496-504
dc.relation.referencesSalmeron, M., Gale, R.J., Somorjai, G.A., (1977) J. Chem. Phys., 67, pp. 5324-5334
dc.relation.referencesKurlov, A.S., Gusev, A.I., (2013) Tungsten Carbides: Structure, Properties and Application in Hardmetals, pp. 191-237. , Springer International Publishing Cham
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesJimenez-Orozco, C., Florez, E., Moreno, A., Liu, P., Rodriguez, J.A., (2017) J. Phys. Chem. C, 121, pp. 19786-19795
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Gutiérrez, R.A., Stacchiola, D.J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) Catal. Sci. Technol., 6, pp. 6766-6777
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., (2016) J. Am. Chem. Soc., 138, pp. 8269-8278
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., (2020) Phys. Chem. Chem. Phys., 22, pp. 13666-13679
dc.relation.referencesKoverga, A.A., Flórez, E., Rodriguez, J.A., (2021) Int. J. Hydrogen Energy, 46, pp. 25092-25102
dc.relation.referencesTilekaratne, A., Simonovis, J.P., López Fagúndez, M.F., Ebrahimi, M., Zaera, F., (2012) ACS Catal., 2, pp. 2259-2268
dc.relation.referencesKresse, G., Hafner, J., (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 47, pp. 558-561
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
dc.relation.referencesAndresson, S., Grüning, M., (2004) J. Phys. Chem. A, 108, pp. 7621-7636
dc.relation.referencesSmeets, E.W.F., Voss, J., Kroes, G.J., (2019) J. Phys. Chem. A, 123, pp. 5395-5406
dc.relation.referencesWijzenbroek, M., Kroes, G.J., (2014) J. Chem. Phys., 140, p. 084702
dc.relation.referencesMonkhorst, H.J., (1979) Phys. Rev. B: Condens. Matter Mater. Phys., 20, p. 1504
dc.relation.referencesZhong, W., Qi, Y., Deng, M., (2015) J. Power Sources, 278, pp. 203-212
dc.relation.referencesSha, Y., Yu, T.H., Merinov, B.V., Goddard III, W.A., (2010) J. Phys. Chem. Lett., 1, pp. 856-861
dc.relation.referencesFigueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., (2020) J. Phys. Chem. Lett., 11, pp. 8437-8441
dc.relation.referencesBlöchl, P.E., (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 50, pp. 17953-17979
dc.relation.referencesKresse, G., Joubert, D., (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodríguez, J.A., Illas, F., (2015) J. Chem. Phys., 143, p. 114704
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., (2013) Int. J. Hydrogen Energy, 38, pp. 5009-5018
dc.relation.referencesRamalho, J.P.P., Gomes, J.R., Illas, F., (2013) RSC Adv., 3, pp. 13085-13100
dc.relation.referencesGrimme, S., (2004) J. Comput. Chem., 25, pp. 1463-1473
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132, p. 154104
dc.relation.referencesMonkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B: Solid State, 13, pp. 5188-5192
dc.relation.referencesMethfessel, M., Paxton, A.T., (1989) Phys. Rev. B: Condens. Matter Mater. Phys., 40, pp. 3616-3621
dc.relation.referencesHenkelman, G., Uberuaga, B.P., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9901-9904
dc.relation.referencesHenkelman, G., Jónsson, H., (2000) J. Chem. Phys., 113, pp. 9978-9985
dc.relation.referencesChorkendorff, I., Niemantsverdriet, J.W., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH GmbH & Co
dc.relation.referencesNørskov, J.K., Studt, F., Abild-Pedersen, F., Bligaard, T., (2014) Fundamental Concepts in Heterogeneous Catalysis, , John Wiley and Sons Hoboken
dc.relation.referencesYan, K., Maark, T.A., Khorshidi, A., Sethuraman, V.A., Peterson, A.A., Guduru, P.R., (2016) Angew. Chem., 128, pp. 6283-6289
dc.relation.referencesKitchin, J.R., Nørskov, J.K., Barteau, M.A., Chen, J.G., (2004) Phys. Rev. Lett., 93, p. 156801
dc.relation.referencesPaßens, M., Caciuc, V., Atodiresei, N., Moors, M., Blügel, S., Waser, R., Karthäuser, S., (2016) Nanoscale, 8, pp. 13924-13933
dc.relation.referencesDuan, H., Hao, Q., Xu, C., (2015) J. Power Sources, 280, pp. 483-490
dc.relation.referencesHammer, B., Nørskov, J.K., (1995) Surf. Sci., 343, pp. 211-220
dc.relation.referencesNorskov, J.K., Abild-Pedersen, F., Studt, F., Bligaard, T., (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 937-943
dc.relation.referencesArboleda, N.B., Kasai, H., Diño, W.A., Nakanishi, H., (2007) Jpn. J. Appl. Phys., 46, pp. 4233-4237
dc.relation.referencesYu, C., Wang, F., Zhang, Y., Zhao, L., Teng, B., Fan, M., Liu, X., (2018) Catalysts, 8, p. 450
dc.relation.referencesLudwig, J., Vlachos, D.G., (2004) Mol. Simul., 30, pp. 765-771
dc.relation.referencesKraus, P., Frank, I., (2017) Int. J. Quantum Chem., 117, p. e25407
dc.relation.referencesPosada-Pérez, S., Viñes, F., Valero, R., Rodriguez, J.A., Illas, F., (2017) Surf. Sci., 656, pp. 24-32
dc.relation.referencesKoido, T., Tomarikawa, K., Yonemura, S., Tokumasu, T., (2011) AIP Conf. Proc., 1333, pp. 469-474
dc.relation.referencesPoelsema, B., Lenz, K., Comsa, G., (2011) J. Chem. Phys., 134, p. 074703
dc.relation.referencesMueller, T., Ceder, G., (2005) J. Phys. Chem. B, 109, pp. 17974-17983
dc.relation.referencesSilveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343
dc.relation.referencesPiñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., (2018) J. Phys. Chem. C, 122, pp. 28013-28020
dc.relation.referencesKhoobiar, S., (1964) J. Phys. Chem., 68, pp. 411-412
dc.relation.referencesBeaumont, S.K., Alayoglu, S., Specht, C., Kruse, N., Somorjai, G.A., (2014) Nano Lett., 14, pp. 4792-4796
dc.relation.referencesMerte, L.R., Peng, G., Bechstein, R., Rieboldt, F., Farberow, C.A., Grabow, L.C., Kudernatsch, W., Besenbacher, F., (2012) Science, 336, pp. 889-893
dc.relation.referencesLi, B., Yim, W.L., Zhang, Q., Chen, L., (2010) J. Phys. Chem. C, 114, pp. 3052-3058
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem