dc.contributor.author | Palacio L.C | |
dc.contributor.author | Ugarte J.P | |
dc.contributor.author | Saiz J | |
dc.contributor.author | Tobón C. | |
dc.date.accessioned | 2022-09-14T14:34:12Z | |
dc.date.available | 2022-09-14T14:34:12Z | |
dc.date.created | 2021 | |
dc.identifier.issn | 20734409 | |
dc.identifier.uri | http://hdl.handle.net/11407/7594 | |
dc.description | Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117156503&doi=10.3390%2fcells10102769&partnerID=40&md5=f8222658e2b533d55fc189241cb0a1b5 | |
dc.source | Cells | |
dc.title | The effects of fibrotic cell type and its density on atrial fibrillation dynamics: An in silico study | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ciencias Básicas | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/cells10102769 | |
dc.subject.keyword | 3D models | eng |
dc.subject.keyword | Atrial fibrillation | eng |
dc.subject.keyword | Diffuse fibrosis | eng |
dc.subject.keyword | Electrograms l | eng |
dc.relation.citationvolume | 10 | |
dc.relation.citationissue | 10 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Palacio, L.C., Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, 050032, Colombia | |
dc.affiliation | Ugarte, J.P., Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín, 050010, Colombia | |
dc.affiliation | Saiz, J., Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València, Valencia, 46022, Spain | |
dc.affiliation | Tobón, C., Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín, 050032, Colombia | |
dc.relation.references | Nattel, S., Harada, M., Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives (2014) J. Am. Coll. Cardiol, 63, pp. 2335-2345. , [CrossRef] [PubMed] | |
dc.relation.references | Stewart, S., Murphy, N., Walker, A., McGuire, A., McMurray, J.J.V., Cost of an emerging epidemic: An economic analysis of atrial fibrillation in the UK (2004) Heart, 90, pp. 286-292. , [CrossRef] | |
dc.relation.references | Andrade, J., Khairy, P., Dobrev, D., Nattel, S., The Clinical Profile and Pathophysiology of Atrial Fibrillation (2014) Circ. Res, 114, pp. 1453-1468. , [CrossRef] [PubMed] | |
dc.relation.references | Haissaguerre, M., Jais, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Clémenty, J., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins (1998) N. Engl. J. Med, 339, pp. 659-666. , [CrossRef] [PubMed] | |
dc.relation.references | Moe, G.K., Rheinboldt, W.C., Abildskov, J., A computer model of atrial fibrillation (1964) Am. Heart J, 67, pp. 200-220. , [CrossRef] | |
dc.relation.references | Jalife, J., Mother rotors and fibrillatory conduction: A mechanism of atrial fibrillation (2002) Cardiovasc. Res, 54, pp. 204-216. , [CrossRef] | |
dc.relation.references | Wijffels, M.C., Kirchhof, C.J., Dorland, R., Allessie, M.A., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats (1995) Circulation, 92, pp. 1954-1968. , [CrossRef] | |
dc.relation.references | Allessie, M., Ausma, J., Schotten, U., Electrical, contractile and structural remodeling during atrial fibrillation (2002) Cardiovasc. Res, 54, pp. 230-246. , [CrossRef] | |
dc.relation.references | Jalife, J., Kaur, K., Atrial remodeling, fibrosis, and atrial fibrillation (2015) Trends Cardiovasc. Med, 25, pp. 475-484. , [CrossRef] | |
dc.relation.references | Newby, D.E., Mannucci, P.M., Tell, G.S., Baccarelli, A.A., Brook, R.D., Donaldson, K., Forastiere, F., Graham, I., Expert position paper on air pollution and cardiovascular disease (2015) Eur. Heart J, 36, pp. 83-93. , [CrossRef] | |
dc.relation.references | Liu, Y., Goodson, J.M., Zhang, B., Chin, M.T., Air pollution and adverse cardiac remodeling: Clinical effects and basic mechanisms (2015) Front. Physiol, 6, p. 162. , [CrossRef] | |
dc.relation.references | Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Mittleman, M.A., Particulate Matter Air Pollution and Cardiovascular Disease (2010) Circulation, 121, pp. 2331-2378. , [CrossRef] | |
dc.relation.references | de Oliveira-Fonoff, A.M., Mady, C., Pessoa, F.G., Fonseca, K.C.B., Salemi, V.M.C., Fernandes, F., Saldiva, P.H.N., Ramires, F.J.A., The role of air pollution in myocardial remodeling (2017) PLoS ONE, 12, p. e0176084. , [CrossRef] [PubMed] | |
dc.relation.references | Rohr, S., Myofibroblasts in diseased hearts: New players in cardiac arrhythmias? (2009) Hear. Rhythm, 6, pp. 848-856. , [CrossRef] [PubMed] | |
dc.relation.references | Xu, J., Cui, G., Esmailian, F., Plunkett, M., Marelli, D., Ardehali, A., Odim, J., Sen, L., Atrial Extracellular Matrix Remodeling and the Maintenance of Atrial Fibrillation (2004) Circulation, 109, pp. 363-368. , [CrossRef] [PubMed] | |
dc.relation.references | Fukumoto, K., Habibi, M., Ipek, E.G., Zahid, S., Khurram, I.M., Zimmerman, S.L., Zipunnikov, V., Trayanova, N., Association of Left Atrial Local Conduction Velocity with Late Gadolinium Enhancement on Cardiac Magnetic Resonance in Patients with Atrial Fibrillation (2016) Circ. Arrhythm. Electrophysiol, 9, p. e002897. , [CrossRef] | |
dc.relation.references | Burstein, B., Comtois, P., Michael, G., Nishida, K., Villeneuve, L., Yeh, Y.-H., Nattel, S., Changes in Connexin Expression and the Atrial Fibrillation Substrate in Congestive Heart Failure (2009) Circ. Res, 105, pp. 1213-1222. , [CrossRef] | |
dc.relation.references | Akoum, N., Daccarett, M., McGann, C., Segerson, N., Vergara, G., Kuppahally, S., Badger, T., Kholmovski, E., Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach (2011) J. Cardiovasc. Electrophysiol, 22, pp. 16-22. , [CrossRef] | |
dc.relation.references | de Jong, S., van Veen, T.A.B., van Rijen, H.V.M., de Bakker, J.M.T., Fibrosis and Cardiac Arrhythmias (2011) J. Cardiovasc. Pharmacol, 57, pp. 630-638. , [CrossRef] | |
dc.relation.references | de Bakker, J.M., van Capelle, F.J., Janse, M.J., Tasseron, S., Vermeulen, J.T., de Jonge, N., Lahpor, J.R., Slow conduction in the infarcted human heart. “Zigzag” course of activation (1993) Circulation, 88, pp. 915-926. , [CrossRef] | |
dc.relation.references | Kawara, T., Derksen, R., de Groot, J.R., Coronel, R., Tasseron, S., Linnenbank, A.C., Hauer, R.N.W., de Bakker, J.M.T., Activation Delay after Premature Stimulation in Chronically Diseased Human Myocardium Relates to the Architecture of Interstitial Fibrosis (2001) Circulation, 104, pp. 3069-3075. , [CrossRef] [PubMed] | |
dc.relation.references | Ten Tusscher, K.H.W.J., Panfilov, A.V., Influence of diffuse fibrosis on wave propagation in human ventricular tissue (2007) EP Eur, 9, pp. vi38-vi45. , [CrossRef] [PubMed] | |
dc.relation.references | Xie, X., Liu, Y., Gao, S., Wu, B., Hu, X., Chen, J., Possible Involvement of Fibrocytes in Atrial Fibrosis in Patients With Chronic Atrial Fibrillation (2014) Circ. J, 78, pp. 338-344. , [CrossRef] [PubMed] | |
dc.relation.references | Rücker-Martin, C., Dedifferentiation of atrial myocytes during atrial fibrillation: Role of fibroblast proliferation in vitro (2002) Cardiovasc. Res, 55, pp. 38-52. , [CrossRef] | |
dc.relation.references | Camelliti, P., Green, C.R., LeGrice, I., Kohl, P., Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling (2004) Circ. Res, 94, pp. 828-835. , [CrossRef] | |
dc.relation.references | Camelliti, P., Borg, T., Kohl, P., Structural and functional characterisation of cardiac fibroblasts (2005) Cardiovasc. Res, 65, pp. 40-51. , [CrossRef] | |
dc.relation.references | Chilton, L., Giles, W.R., Smith, G.L., Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts (2007) J. Physiol, 583, pp. 225-236. , [CrossRef] | |
dc.relation.references | Aujla, P.K., Kassiri, Z., Diverse origins and activation of fibroblasts in cardiac fibrosis (2021) Cell. Signal, 78, p. 109869. , [CrossRef] | |
dc.relation.references | Yue, L., Xie, J., Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation (2011) Cardiovasc. Res, 89, pp. 744-753. , [CrossRef] | |
dc.relation.references | Cabanas-grandío, P., Bisbal, F., Current Role and Future Prospects of Magnetic Resonance Imaging in the Field of Atrial Fibrillation Ablation (2015) J. Atr. Fibrillation, 8, p. 1281. , [CrossRef] | |
dc.relation.references | Miragoli, M., Gaudesius, G., Rohr, S., Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts (2006) Circ. Res, 98, pp. 801-810. , [CrossRef] | |
dc.relation.references | Miragoli, M., Glukhov, A.V., Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View (2015) BioMed Res. Int, 2015, p. 798768. , [CrossRef] | |
dc.relation.references | Krul, S.P.J., Berger, W.R., Smit, N.W., van Amersfoorth, S.C.M., Driessen, A.H.G., van Boven, W.J., Fiolet, J.W.T., de Bakker, J.M.T., Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation (2015) Circ. Arrhythm. Electrophysiol, 8, pp. 288-295. , [CrossRef] | |
dc.relation.references | Miragoli, M., Salvarani, N., Rohr, S., Myofibroblasts Induce Ectopic Activity in Cardiac Tissue (2007) Circ. Res, 101, pp. 755-758. , [CrossRef] [PubMed] | |
dc.relation.references | Mori, L., Bellini, A., Stacey, M.A., Schmidt, M., Mattoli, S., Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow (2005) Exp. Cell Res, 304, pp. 81-90. , [CrossRef] [PubMed] | |
dc.relation.references | Lin, R.-J., Su, Z.-Z., Liang, S.-M., Chen, Y.-Y., Shu, X.-R., Nie, R.-Q., Wang, J.-F., Xie, S.-L., Role of Circulating Fibrocytes in Cardiac Fibrosis (2016) Chin. Med. J, 129, pp. 326-331. , [CrossRef] [PubMed] | |
dc.relation.references | Jalife, J., Mechanisms of persistent atrial fibrillation (2014) Curr. Opin. Cardiol, 29, pp. 20-27. , [CrossRef] [PubMed] | |
dc.relation.references | Courtemanche, M., Ramirez, R.J., Nattel, S., Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model (1998) Am. J. Physiol.-Heart Circ. Physiol, 275, pp. H301-H321. , [CrossRef] | |
dc.relation.references | Kneller, J., Zou, R., Vigmond, E.J., Wang, Z., Leon, L.J., Nattel, S., Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties (2002) Circ. Res, 90, pp. E73-E87. , [CrossRef] | |
dc.relation.references | Caballero, R., de la Fuente, M.G., Gómez, R., Barana, A., Amorós, I., Dolz-Gaitón, P., Osuna, L., Fernández-Avilés, F., In Humans, Chronic Atrial Fibrillation Decreases the Transient Outward Current and Ultrarapid Component of the Delayed Rectifier Current Differentially on Each Atria and Increases the Slow Component of the Delayed Rectifier Current in Both (2010) J. Am. Coll. Cardiol, 55, pp. 2346-2354. , [CrossRef] | |
dc.relation.references | Bosch, R.F., Zeng, X., Grammer, J.B., Popovic, K., Mewis, C., Kühlkamp, V., Ionic mechanisms of electrical remodeling in human atrial fibrillation (1999) Cardiovasc. Res, 44, pp. 121-131. , [CrossRef] | |
dc.relation.references | Van Wagoner, D.R., Pond, A.L., Lamorgese, M., Rossie, S.S., McCarthy, P.M., Nerbonne, J.M., Atrial L-type Ca2+ currents and human atrial fibrillation (1999) Circ. Res, 85, pp. 428-436. , [CrossRef] | |
dc.relation.references | Colman, M.A., Aslanidi, O.V., Kharche, S., Boyett, M.R., Garratt, C., Hancox, J.C., Zhang, H., Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: Insights from the three-dimensional virtual human atria (2013) J. Physiol, 591, pp. 4249-4272. , [CrossRef] [PubMed] | |
dc.relation.references | Martinez-Mateu, L., Romero, L., Ferrer-Albero, A., Sebastian, R., Rodríguez Matas, J.F., Jalife, J., Berenfeld, O., Saiz, J., Factors affecting basket catheter detection of real and phantom rotors in the atria: A computational study (2018) PLoS Comput. Biol, 14, p. e1006017. , [CrossRef] [PubMed] | |
dc.relation.references | Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R.B., Giles, W.R., A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts (2007) Biophys. J, 92, pp. 4121-4132. , [CrossRef] [PubMed] | |
dc.relation.references | Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Trayanova, N.A., The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: Implications for electrogram-based catheter ablation (2012) Circ. Res, 110, pp. 275-284. , [CrossRef] | |
dc.relation.references | Maleckar, M.M., Greenstein, J.L., Giles, W.R., Trayanova, N.A., Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization (2009) Biophys. J, 97, pp. 2179-2190. , [CrossRef] | |
dc.relation.references | Chilton, L., Ohya, S., Freed, D., George, E., Drobic, V., Shibukawa, Y., MacCannell, K.A., Dixon, I.M.C., K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts (2005) Am. J. Physiol. Circ. Physiol, 288, pp. H2931-H2939. , [CrossRef] | |
dc.relation.references | Zahid, S., Cochet, H., Boyle, P.M., Schwarz, E.L., Whyte, K.N., Vigmond, E.J., Dubois, R., Jaïs, P., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern (2016) Cardiovasc. Res, 110, pp. 443-454. , [CrossRef] [PubMed] | |
dc.relation.references | Sung, R.J., Lauer, M.R., Fundamental Approaches to the Management of Cardiac Arrhythmias (2000) Fundamental Approaches to the Management of Cardiac Arrhythmias, p. 418. , Springer: Dordrecht, The Netherlands | |
dc.relation.references | van der Velden, H., Ausma, J., Rook, M.B., Hellemons, A.J.C.G.M., van Veen, T.A.A.B., Allessie, M.A., Jongsma, H.J., Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat (2000) Cardiovasc. Res, 46, pp. 476-486. , [CrossRef] | |
dc.relation.references | Bucala, R., Spiegel, L.A., Chesney, J., Hogan, M., Cerami, A., Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair (1994) Mol. Med, 1, pp. 71-81. , [CrossRef] | |
dc.relation.references | Tobón, C., Ruiz-Villa, C., Heidenreich, E., Romero, L., Hornero, F., Saiz, J., A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship (2013) PLoS ONE, 8, p. e50883. , [CrossRef] | |
dc.relation.references | Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J.F., Godoy, E.J., Martínez, L., Saiz, J., Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation (2015) PLoS ONE, 10, p. e0141573. , [CrossRef] | |
dc.relation.references | Daccarett, M., Badger, T.J., Akoum, N., Burgon, N.S., Mahnkopf, C., Vergara, G., Kholmovski, E., Brachmann, J., Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation (2011) J. Am. Coll. Cardiol, 57, pp. 831-838. , [CrossRef] | |
dc.relation.references | Gomez, J.F., Cardona, K., Martinez, L., Saiz, J., Trenor, B., Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study (2014) PLoS ONE, 9, p. e103273. , [CrossRef] | |
dc.relation.references | Henriquez, C.S., Papazoglou, A.A., Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis (1996) Proc. IEEE, 84, pp. 334-354. , [CrossRef] | |
dc.relation.references | Heidenreich, E.A., Ferrero, J.M., Doblaré, M., Rodríguez, J.F., Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology (2010) Ann. Biomed. Eng, 38, pp. 2331-2345. , [CrossRef] | |
dc.relation.references | Ferrero, J.M., Ferrero, J.M.J., Saiz, J., Arnau, A., Bioelectrónica (1994) Señales Bioeléctricas, p. 620. , 1st ed. | |
dc.relation.references | Universitat Politècnica de València: Valencia, Spain | |
dc.relation.references | Everett, T.H., Kok, L.C., Vaughn, R.H., Moorman, J.R., Haines, D.E., Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy (2001) IEEE Trans. Biomed. Eng, 48, pp. 969-978. , [CrossRef] | |
dc.relation.references | Lau, D.H., Linz, D., Sanders, P., New Findings in Atrial Fibrillation Mechanisms (2019) Card. Electrophysiol. Clin, 11, pp. 563-571. , [CrossRef] | |
dc.relation.references | Chen, T.-L., Liao, J.-W., Chan, W.-H., Hsu, C.-Y., Yang, J.-D., Ueng, T.-H., Induction of cardiac fibrosis and transforming growth factor-β1 by motorcycle exhaust in rats (2013) Inhal. Toxicol, 25, pp. 525-535. , [CrossRef] | |
dc.relation.references | Wold, L.E., Ying, Z., Hutchinson, K.R., Velten, M., Gorr, M.W., Velten, C., Youtz, D.J., Sun, Q., Cardiovascular Remodeling in Response to Long-Term Exposure to Fine Particulate Matter Air Pollution (2012) Circ. Heart Fail, 5, pp. 452-461. , [CrossRef] | |
dc.relation.references | Sharykin, A.S., Badtieva, V.A., Trunina, I.I., Osmanov, I.M., Myocardial fibrosis—A new component of heart remodeling in athletes? (2019) Cardiovasc. Ther. Prev, 18, pp. 126-135. , [CrossRef] | |
dc.relation.references | Doñate Puertas, R., Millat, G., Ernens, I., Gache, V., Chauveau, S., Morel, E., Christin, E., Chevalier, P., Atrial Structural Remodeling Gene Variants in Patients with Atrial Fibrillation (2018) BioMed Res. Int, 2018, p. 4862480. , [CrossRef] | |
dc.relation.references | Tian, X.-T., Xu, Y.-J., Yang, Y.-Q., Gender Differences in Arrhythmias: Focused on Atrial Fibrillation (2020) J. Cardiovasc. Transl. Res, 13, pp. 85-96. , [CrossRef] | |
dc.relation.references | Cochet, H., Mouries, A., Nivet, H., Sacher, F., Derval, N., Denis, A., Merle, M., Haïssaguerre, M., Age, Atrial Fibrillation, and Structural Heart Disease Are the Main Determinants of Left Atrial Fibrosis Detected by Delayed-Enhanced Magnetic Resonance Imaging in a General Cardiology Population (2015) J. Cardiovasc. Electrophysiol, 26, pp. 484-492. , [CrossRef] | |
dc.relation.references | Ma, J., Chen, Q., Ma, S., Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management (2021) J. Cell. Mol. Med, 25, pp. 2764-2775. , [CrossRef] | |
dc.relation.references | Li, S., Gao, Y., Liu, Y., Li, J., Yang, X., Hu, R., Liu, J., Li, K., Myofibroblast-Derived Exosomes Contribute to Development of a Susceptible Substrate for Atrial Fibrillation (2020) Cardiology, 145, pp. 324-332. , [CrossRef] | |
dc.relation.references | Lüscher, T.F., Challenges in atrial fibrillation: Detection, alert systems, fibrosis, and infection (2020) Eur. Heart J, 41, pp. 1063-1066. , [CrossRef] | |
dc.relation.references | Kohl, P., Camelliti, P., Burton, F.L., Smith, G.L., Electrical coupling of fibroblasts and myocytes: Relevance for cardiac propagation (2005) J. Electrocardiol, 38, pp. 45-50. , [CrossRef] | |
dc.relation.references | Poulet, C., Künzel, S., Büttner, E., Lindner, D., Westermann, D., Ravens, U., Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation (2016) Physiol. Rep, 4, p. e12681. , [CrossRef] | |
dc.relation.references | He, L., Liu, R., Yue, H., Ren, S., Zhu, G., Guo, Y., Qin, C., Actin-granule formation is an additional step in cardiac myofibroblast differentiation (2021) Ann. Transl. Med, 9, p. 165. , [CrossRef] | |
dc.relation.references | Liu, Y., Niu, X., Yin, X., Liu, Y., Han, C., Yang, J., Huang, X., Yang, Y., Elevated Circulating Fibrocytes Is a Marker of Left Atrial Fibrosis and Recurrence of Persistent Atrial Fibrillation (2018) J. Am. Heart Assoc, 7, p. e008083. , [CrossRef] [PubMed] | |
dc.relation.references | Corradi, D., Callegari, S., Benussi, S., Maestri, R., Pastori, P., Nascimbene, S., Bosio, S., Rusconi, R., Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease (2005) Hum. Pathol, 36, pp. 1080-1089. , [CrossRef] | |
dc.relation.references | Xiao, H.D., Fuchs, S., Campbell, D.J., Lewis, W., Dudley, S.C., Kasi, V.S., Hoit, B.D., Capecchi, M.R., Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death (2004) Am. J. Pathol, 165, pp. 1019-1032. , [CrossRef] | |
dc.relation.references | Anyukhovsky, E., Sosunov, E.A., Plotnikov, A., Gainullin, R.Z., Jhang, J.S., Marboe, C.C., Rosen, M.R., Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis (2002) Cardiovasc. Res, 54, pp. 462-469. , [CrossRef] | |
dc.relation.references | Frustaci, A., Chimenti, C., Bellocci, F., Morgante, E., Russo, M.A., Maseri, A., Histological substrate of atrial biopsies in patients with lone atrial fibrillation (1997) Circulation, 96, pp. 1180-1184. , [CrossRef] | |
dc.relation.references | Boldt, A., Wetzel, U., Lauschke, J., Weigl, J., Gummert, J., Hindricks, G., Kottkamp, H., Dhein, S., Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease (2004) Heart, 90, pp. 400-405. , [CrossRef] | |
dc.relation.references | Mora, M.T., Ferrero, J.M., Gomez, J.F., Sobie, E.A., Trenor, B., Ca2+ Cycling Impairment in Heart Failure Is Exacerbated by Fibrosis: Insights Gained From Mechanistic Simulations (2018) Front. Physiol, 9, p. 1194. , [CrossRef] | |
dc.relation.references | Morgan, R., Colman, M.A., Chubb, H., Seemann, G., Aslanidi, O.V., Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling (2016) Front. Physiol, 7, p. 474. , [CrossRef] | |
dc.relation.references | de Bakker, J.M.T., van Rijen, H.M.V., Continuous and Discontinuous Propagation in Heart Muscle (2006) J. Cardiovasc. Electrophysiol, 17, pp. 567-573. , [CrossRef] | |
dc.relation.references | Jacquemet, V., Henriquez, C.S., Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis (2009) Hear. Rhythm, 6, pp. 803-810. , [CrossRef] [PubMed] | |
dc.relation.references | Zhan, H., Xia, L., Shou, G., Zang, Y., Liu, F., Crozier, S., Fibroblast proliferation alters cardiac excitation conduction and contraction: A computational study (2014) J. Zhejiang Univ. Sci. B, 15, pp. 225-242. , [CrossRef] [PubMed] | |
dc.relation.references | Gokhale, T.A., Asfour, H., Verma, S., Bursac, N., Henriquez, C.S., Microheterogeneity-induced conduction slowing and wavefront collisions govern macroscopic conduction behavior: A computational and experimental study (2018) PLoS Comput. Biol, 14, p. e1006276. , [CrossRef] [PubMed] | |
dc.relation.references | Jousset, F., Maguy, A., Rohr, S., Kucera, J.P., Myofibroblasts electrotonically coupled to cardiomyocytes alter conduction: Insights at the cellular level from a detailed in silico tissue structure model (2016) Front. Physiol, 7, p. 496. , [CrossRef] | |
dc.relation.references | Zlochiver, S., Muñ, V., Vikstrom, K.L., Taffet, S.M., Berenfeld, O., Jalife, J., Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers (2008) Biophys. J, 95, pp. 4469-4480. , [CrossRef] | |
dc.relation.references | Tanaka, K., Zlochiver, S., Vikstrom, K.L., Yamazaki, M., Moreno, J., Klos, M., Zaitsev, A.V., Landas, S., Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure (2007) Circ. Res, 101, pp. 839-847. , [CrossRef] | |
dc.relation.references | King, J., Huang, C., Frase, J., Determinants of myocardial conduction velocity: Implications for arrhythmogenesis (2013) Front. Physiol, 4, pp. 331-344. , [CrossRef] | |
dc.relation.references | McDowell, K.S., Zahid, S., Vadakkumpadan, F., Blauer, J., MacLeod, R.S., Trayanova, N.A., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling (2015) PLoS ONE, 10, p. e0117110. , [CrossRef] | |
dc.relation.references | Comtois, P., Nattel, S., Interactions between cardiac fibrosis spatial pattern and ionic remodeling on electrical wave propagation Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4669-4672. , Boston, MA, USA, 30 August–3 September 2011 | |
dc.relation.references | Luetkens, J.A., Wolpers, A.C., Beiert, T., Kuetting, D., Dabir, D., Homsi, R., Meendermann, H., Karsdal, M., Cardiac magnetic resonance using late gadolinium enhancement and atrial T1 mapping predicts poor outcome in patients with atrial fibrillation after catheter ablation therapy (2018) Sci. Rep, 8, p. 13618. , [CrossRef] | |
dc.relation.references | Kheirkhahan, M., Baher, A., Goldooz, M., Kholmovski, E.G., Morris, A.K., Csecs, I., Chelu, M.G., Marrouche, N.F., Left atrial fibrosis progression detected by LGE-MRI after ablation of atrial fibrillation (2020) Pacing Clin. Electrophysiol, 43, pp. 402-411. , [CrossRef] | |
dc.relation.references | Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F.H., Jalife, J., Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart (2001) Circulation, 103, pp. 2631-2636. , [CrossRef] [PubMed] | |
dc.relation.references | Filgueiras-Rama, D., Price, N.F., Martins, R.P., Yamazaki, M., Avula, U.M.R., Kaur, K., Kalifa, J., Devabhak-tuni, V., Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium (2012) Circ. Arrhythm. Electrophysiol, 5, pp. 1160-1167. , [CrossRef] [PubMed] | |
dc.relation.references | Traykov, V.B., Pap, R., Saghy, L., Frequency domain mapping of atrial fibrillation-methodology, experimental data and clinical implications (2012) Curr. Cardiol. Rev, 8, pp. 231-238. , [CrossRef] [PubMed] | |
dc.relation.references | Berenfeld, O., Ionic and substrate mechanism of atrial fibrillation: Rotors and the exitación frequency approach (2010) Arch. Cardiol. Mex, 80, pp. 301-314 | |
dc.relation.references | Wilhelms, M., Hettmann, H., Maleckar, M.M., Koivumäki, J.T., Dössel, O., Seemann, G., Benchmarking electrophysiological models of human atrial myocytes (2012) Front. Physiol, 3, p. 487. , [CrossRef] | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |