Show simple item record

dc.contributor.authorFlórez E
dc.contributor.authorAcelas N
dc.contributor.authorGómez S
dc.contributor.authorHadad C
dc.contributor.authorRestrepo A.
dc.date.accessioned2022-09-14T14:34:17Z
dc.date.available2022-09-14T14:34:17Z
dc.date.created2022
dc.identifier.issn14394235
dc.identifier.urihttp://hdl.handle.net/11407/7607
dc.descriptionA detailed analysis under a comprehensive set of theoretical and computational tools of the thermodynamical factors and of the intermolecular interactions behind the stabilization of a well known set of (water)20 cavities and of the methane clathrate is offered in this work. Beyond the available reports of experimental characterization at extreme conditions of most of the systems studied here, all clusters should be amenable to experimental detection at 1 atm and moderate temperatures since 280 K marks the boundary at which, ignoring reaction paths, formation of all clusters is no longer spontaneous from the 20H2O→(H2O)20 and CH4+20H2O→CH4@512 processes. As a function of temperature, a complex interplay leading to the free energy of formation occurs between the destabilizing entropic contributions, mostly due to cluster vibrations, and the stabilizing enthalpic contributions, due to intermolecular interactions and the PV term, is best illustrated by the highly symmetric 512 cage consistently showing signs of stronger intermolecular bonding despite having smaller binding energy than the other clusters. A fluxional wall of attractive non-covalent interactions, arising because of the cumulative effect of a large number of tiny individual charge transfers to the interstitial region, plays a pivotal role stabilizing the CH4@512 clathrate. © 2021 Wiley-VCH GmbHeng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85122803420&doi=10.1002%2fcphc.202100716&partnerID=40&md5=a09c75848f51f94748e8df8c93ed3dce
dc.sourceChemPhysChem
dc.titleTo Be or Not To Be? that is the Entropic, Enthalpic, and Molecular Interaction Dilemma in the Formation of (Water)20 Clusters and Methane Clathrate
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1002/cphc.202100716
dc.subject.keywordCharge transfereng
dc.subject.keywordFree energyeng
dc.subject.keywordHydrationeng
dc.subject.keywordMethaneeng
dc.subject.keywordCH 4eng
dc.subject.keywordComputational toolseng
dc.subject.keywordExperimental characterizationeng
dc.subject.keywordExtreme conditionseng
dc.subject.keywordIntermolecular interactionseng
dc.subject.keywordMethane clathrateseng
dc.subject.keywordModerate temperatureeng
dc.subject.keywordPath formationeng
dc.subject.keywordReaction pathseng
dc.subject.keywordThermodynamicaleng
dc.subject.keywordBinding energyeng
dc.relation.citationvolume23
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationFlórez, E., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationGómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationHadad, C., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín, Colombia
dc.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52–21, Medellín, Colombia
dc.relation.referencesSamanta, D., Klajn, R., (2017) Science, 355, p. 912
dc.relation.referencesTakeya, S., Uchida, T., Kamata, Y., Nagao, J., Kida, M., Minami, H., Sakagami, H., Soloviev, V., (2005) Angew. Chem. Int. Ed., 44, pp. 6928-6931
dc.relation.references(2005) Angew. Chem., 117, pp. 7088-7091
dc.relation.referencesNguyen, N.N., Berger, R., Wagner, M., Thiel, J., Butt, H.-J., Graf, R., (2021) J. Phys. Chem. C, 125, pp. 15751-15757
dc.relation.referencesHuang, Y., Zhu, C., Wang, L., Cao, X., Su, Y., Jiang, X., Meng, S., Zeng, X.C., (2016) Sci. Adv., 2
dc.relation.referencesShin, K., Moudrakovski, I.L., Ratcliffe, C.I., Ripmeester, J.A., (2017) Angew. Chem. Int. Ed., 56, pp. 6171-6175
dc.relation.references(2017) Angew. Chem., 129, pp. 6267-6271
dc.relation.referencesAlavi, S., Ripmeester, J.A., (2007) Angew. Chem. Int. Ed., 46, pp. 6102-6105
dc.relation.references(2007) Angew. Chem., 119, pp. 6214-6217
dc.relation.referencesWalsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., Wu, D.T., (2009) Science, 326, pp. 1095-1098
dc.relation.referencesLudwig, R., Appelhagen, A., (2005) Angew. Chem. Int. Ed., 44, pp. 811-815
dc.relation.references(2005) Angew. Chem., 117, pp. 821-826
dc.relation.referencesShin, K., Udachin, K.A., Moudrakovski, I.L., Leek, D.M., Alavi, S., Ratcliffe, C.I., Ripmeester, J.A., (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 8437-8442
dc.relation.referencesYoo, C.-S., (2017) MRS Bull., 42, pp. 724-728
dc.relation.referencesLuspay-Kuti, A., Mousis, O., Hässig, M., Fuselier, S.A., Lunine, J.I., Marty, B., Mandt, K.E., Rubin, M., (2016) Sci. Adv., 2
dc.relation.referencesChattaraj, P.K., Bandaru, S., Mondal, S., (2011) J. Phys. Chem. A, 115, pp. 187-193
dc.relation.referencesBuch, V., Devlin, J.P., Monreal, I.A., Jagoda-Cwiklik, B., Uras-Aytemiz, N., Cwiklik, L., (2009) Phys. Chem. Chem. Phys., 11, pp. 10245-10265
dc.relation.referencesFalenty, A., Hansen, T.C., Kuhs, W.F., (2014) Nature, 516, pp. 231-233
dc.relation.referencesGhosh, J., Methikkalam, R.R.J., Bhuin, R.G., Ragupathy, G., Choudhary, N., Kumar, R., Pradeep, T., (2019) Proc. Natl. Acad. Sci. USA, 116, pp. 1526-1531
dc.relation.referencesGhosh, J., Bhuin, R.G., Vishwakarma, G., Pradeep, T., (2020) J. Chem. Phys., 11, pp. 26-32
dc.relation.referencesWei, S., Shi, Z., Castleman, A.W., (1991) J. Chem. Phys., 94, pp. 3268-3270
dc.relation.referencesBader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford Univ. press Oxford
dc.relation.referencesPopelier, P.L., (2000) Atoms in Molecules: An Introduction, , Prentice Hall, London
dc.relation.referencesGrabowski, S.J., (2011) Chem. Rev., 111, pp. 2597-2625
dc.relation.referencesReed, A.E., Curtiss, L.A., Weinhold, F., (1988) Chem. Rev., 88, pp. 899-926
dc.relation.referencesWeinhold, F., Landis, C., Glendening, E., (2016) Int. Rev. Phys. Chem., 35, pp. 399-440
dc.relation.referencesWeinhold, F., Landis, C.R., (2012) Discovering Chemistry with Natural Bond Orbitals, , Wiley-VCH, Hoboken NJ, 319 pp
dc.relation.referencesJohnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W., (2010) J. Am. Chem. Soc., 132, pp. 6498-6506
dc.relation.referencesDiLabio, G.A., Otero-de-la Roza, A., (2016) Reviews in Computational Chemistry, pp. 1-97. , John Wiley & Sons, Ltd., Chapter 1, pp
dc.relation.referencesWang, K., Li, W., Li, S., (2014) J. Chem. Theory Comput., 10, pp. 1546-1553
dc.relation.referencesGaussian Inc (2009) Wallingford CT
dc.relation.references(2013) NBO 6.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison
dc.relation.references(2019) AIMALL (Version 19.10.12), , TK Gristmill Software, Overland Park KS, USA, aim.tkgristmill.com
dc.relation.referencesContreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W., (2011) J. Chem. Theory Comput., 7, pp. 625-632
dc.relation.referencesPal, J., Patla, A., Subramanian, R., (2021) Chemosphere, 272
dc.relation.referencesStachl, C.N., Williams, E.R., (2020) J. Chem. Phys., 11, pp. 6127-6132
dc.relation.referencesJohnson, R., (2002)
dc.relation.referencesRojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061
dc.relation.referencesGómez, S.A., Rojas-Valencia, N., Gómez, S., Egidi, F., Cappelli, C., Restrepo, A., (2021) ChemBioChem, 22, pp. 724-732
dc.relation.referencesGomez, S.A., Rojas-Valencia, N., Gomez, S., Cappelli, C., Restrepo, A., Chembiochem, , https://doi.org/10.1002/cbic.202100393
dc.relation.referencesRojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., Restrepo, A., (2020) J. Phys. Chem. B, 124, pp. 79-90
dc.relation.referencesRojas-Valencia, N., Gómez, S., Núñez-Zarur, F., Cappelli, C., Hadad, C., Restrepo, A., (2021) J. Phys. Chem. B, 125, pp. 10383-10391
dc.relation.referencesKeutsch, F.N., Saykally, R.J., (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10533-10540
dc.relation.referencesFlórez, E., Acelas, N., Ramírez, F., Hadad, C., Restrepo, A., (2018) Phys. Chem. Chem. Phys., 20, pp. 8909-8916
dc.relation.referencesDavid, J., Gomez, S., Guerra, D., Guerra, D., Restrepo, A., (2021) ChemPhysChem
dc.relation.referencesCuautli, C., Hernández-Lamoneda, R., (2019) J. Phys. Chem. C, 123, pp. 24793-24806
dc.relation.referencesGómez, S., Rojas-Valencia, N., Gómez, S.A., Cappelli, C., Merino, G., Restrepo, A., (2021) Chem. Sci., 12, pp. 9233-9245
dc.relation.referencesGómez, S., Nafziger, J., Restrepo, A., Wasserman, A., (2017) J. Chem. Phys., 146
dc.relation.referencesHincapié, G., Acelas, N., Castaño, M., David, J., Restrepo, A., (2010) J. Phys. Chem. A, 114, pp. 7809-7814
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record