REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater

Thumbnail
Compartir este ítem
Fecha
2022
Autor
Quisperima A
Pérez S
Flórez E
Acelas N.

Citación

       
TY - GEN T1 - Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater Y1 - 2022 UR - http://hdl.handle.net/11407/7621 PB - Elsevier Ltd AB - Potato peel (PP) waste are generated in huge quantities, causing environmental pollution and health problems. Therefore, obtaining value-added products from PP is a current research challenge. In this work, novel Ca-biocomposites for phosphorus (P) removal were prepared by pyrolysis (500–800 °C) using eggshell (ES) and PP (ES/PP = 1:2 ratio by weight). ESPP-700 (pyrolyzed at 700 °C), reached a Qmax of 174.8 mg P/g, while the application of Ca-biocomposites in domestic wastewater showed 85.96% of P removal. According to the pseudo-second-order kinetic model, P adsorption was dominated by chemisorption, follows by apatite precipitation. The P solubility (62.5 wt.%) in formic acid (2.0 wt.%) and the water-soluble P (3.2 wt.%) for ESPP-700 after P adsorption, indicated that the final product would work as fertilizer for acidic soils. This is an important step in the management of agricultural wastes to implement the 3R slogan “Reduce, Reuse, Recycle” towards a circular economy. © 2021 Elsevier Ltd ER - @misc{11407_7621, author = {}, title = {Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater}, year = {2022}, abstract = {Potato peel (PP) waste are generated in huge quantities, causing environmental pollution and health problems. Therefore, obtaining value-added products from PP is a current research challenge. In this work, novel Ca-biocomposites for phosphorus (P) removal were prepared by pyrolysis (500–800 °C) using eggshell (ES) and PP (ES/PP = 1:2 ratio by weight). ESPP-700 (pyrolyzed at 700 °C), reached a Qmax of 174.8 mg P/g, while the application of Ca-biocomposites in domestic wastewater showed 85.96% of P removal. According to the pseudo-second-order kinetic model, P adsorption was dominated by chemisorption, follows by apatite precipitation. The P solubility (62.5 wt.%) in formic acid (2.0 wt.%) and the water-soluble P (3.2 wt.%) for ESPP-700 after P adsorption, indicated that the final product would work as fertilizer for acidic soils. This is an important step in the management of agricultural wastes to implement the 3R slogan “Reduce, Reuse, Recycle” towards a circular economy. © 2021 Elsevier Ltd}, url = {http://hdl.handle.net/11407/7621} }RT Generic T1 Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater YR 2022 LK http://hdl.handle.net/11407/7621 PB Elsevier Ltd AB Potato peel (PP) waste are generated in huge quantities, causing environmental pollution and health problems. Therefore, obtaining value-added products from PP is a current research challenge. In this work, novel Ca-biocomposites for phosphorus (P) removal were prepared by pyrolysis (500–800 °C) using eggshell (ES) and PP (ES/PP = 1:2 ratio by weight). ESPP-700 (pyrolyzed at 700 °C), reached a Qmax of 174.8 mg P/g, while the application of Ca-biocomposites in domestic wastewater showed 85.96% of P removal. According to the pseudo-second-order kinetic model, P adsorption was dominated by chemisorption, follows by apatite precipitation. The P solubility (62.5 wt.%) in formic acid (2.0 wt.%) and the water-soluble P (3.2 wt.%) for ESPP-700 after P adsorption, indicated that the final product would work as fertilizer for acidic soils. This is an important step in the management of agricultural wastes to implement the 3R slogan “Reduce, Reuse, Recycle” towards a circular economy. © 2021 Elsevier Ltd OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
Potato peel (PP) waste are generated in huge quantities, causing environmental pollution and health problems. Therefore, obtaining value-added products from PP is a current research challenge. In this work, novel Ca-biocomposites for phosphorus (P) removal were prepared by pyrolysis (500–800 °C) using eggshell (ES) and PP (ES/PP = 1:2 ratio by weight). ESPP-700 (pyrolyzed at 700 °C), reached a Qmax of 174.8 mg P/g, while the application of Ca-biocomposites in domestic wastewater showed 85.96% of P removal. According to the pseudo-second-order kinetic model, P adsorption was dominated by chemisorption, follows by apatite precipitation. The P solubility (62.5 wt.%) in formic acid (2.0 wt.%) and the water-soluble P (3.2 wt.%) for ESPP-700 after P adsorption, indicated that the final product would work as fertilizer for acidic soils. This is an important step in the management of agricultural wastes to implement the 3R slogan “Reduce, Reuse, Recycle” towards a circular economy. © 2021 Elsevier Ltd
URI
http://hdl.handle.net/11407/7621
Colecciones
  • Indexados Scopus [2099]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com