Show simple item record

dc.contributor.authorDel Rio J.A.S
dc.contributor.authorArdila Y.R
dc.contributor.authorSánchez A.R
dc.contributor.authorQuintana E.C
dc.contributor.authorSanin-Villa D
dc.contributor.authorGonzález C.A
dc.contributor.authorRisco M.L.-D.
dc.date.accessioned2023-10-24T19:24:24Z
dc.date.available2023-10-24T19:24:24Z
dc.date.created2023
dc.identifier.issn21801363
dc.identifier.urihttp://hdl.handle.net/11407/7945
dc.description.abstractThe electrical efficiency of solar photovoltaic (PV) panels depends on their temperature. One of the significant problems consists in the overheating due to the total radiation energy, the ambient temperature, and the low capacity t o dissipate this thermal energy. To improve the efficiency of solar panels, a numerical study was carried out using the ANSYS-Fluent 2021 commercial software in which the heat transfer between a solar panel with and without heat sinks was modelled, determining the incidence of fins in power generated by the photovoltaic cell. For the development of the study, initially, the theoretical calculation of the heat transfer and the generated power that occurs in the cell with and without a heat sink was carried o ut. Therefore, numerical simulation was conducted to analyse the effect of the geometry of the heat sink on the efficiency of the photovoltaic cells; different arrangements of rectangular fins were taken, varying their height (10 mm, 25 mm, and 50 mm). For the model’s configuration, boundary conditions corresponding to physical phenomena such as solar radiation and forced convection were considered. Results show an increase on the solar PV panel efficiency of 0.36%, 0.72%, and 1.07% for the height heat sinks of 10 mm, 25 mm, and 50 mm compared to the commercial PV solar panel without heat dissipation, respectively. © 2023, Penerbit Akademia Baru. All rights reserved.eng
dc.language.isoeng
dc.publisherPenerbit Akademia Baru
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148526859&doi=10.37934%2fcfdl.15.4.4352&partnerID=40&md5=e69600d064bea60853238e0590f1aeb1
dc.sourceCFD Lett.
dc.sourceCFD Letterseng
dc.subjectCFDeng
dc.subjectEfficiencyeng
dc.subjectPhotovoltaiceng
dc.subjectSinkeng
dc.subjectSolar energyeng
dc.titleNumerical Study of the Efficiency of a Solar Panel with Heat Sinkseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.type.spaArtículo
dc.identifier.doi10.37934/cfdl.15.4.4352
dc.relation.citationvolume15
dc.relation.citationissue4
dc.relation.citationstartpage43
dc.relation.citationendpage52
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationDel Rio, J.A.S., Department of Mechanical Engineering-GIIAM, Institución Universitaria Pascual Bravo, Medellín, Colombia
dc.affiliationArdila, Y.R., Department of Mechatronics Engineering-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationSánchez, A.R., Department of Mechatronics Engineering-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationQuintana, E.C., Department of Mechatronics Engineering-MATyER, Instituto Tecnológico Metropolitano, Medellín, Colombia
dc.affiliationSanin-Villa, D., Department of Mechanical Engineering-GIIAM, Institución Universitaria Pascual Bravo, Medellín, Colombia
dc.affiliationGonzález, C.A., Engineering Faculty, Research Group-Ingeniería en Ingeniería en Energía-GRINEN, Universidad de Medellín, Medellín, Colombia
dc.affiliationRisco, M.L.-D., Engineering Faculty, Research Group-Ingeniería en Ingeniería en Energía-GRINEN, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesLoni, Reyhaneh, Najafi, Gholamhassan, Mamat, Rizalman, Ghazali, Mohd Fairusham, Sidik, Nor Azwadi Che, Nusselt Number Prediction for Oil and Water in Solar Tubular Cavity Receivers (2022) Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 97 (2), pp. 157-174. , https://doi.org/10.37934/arfmts.97.2.157174
dc.relation.referencesRebhi, Redha, Menni, Younes, Lorenzini, Giulio, Ahmad, Hijaz, Forced-Convection Heat Transfer in Solar Collectors and Heat Exchangers: A Review (2022) Journal of Advanced Research in Applied Sciences and Engineering Technology, 26 (3), pp. 1-15. , https://doi.org/10.37934/araset.26.3.115
dc.relation.referencesFlórez, Ramiro Ortiz, (2001) Pequeñas centrales hidroeléctricas, , McGraw-Hill Interamericana
dc.relation.referencesPopovici, Cătălin George, Hudişteanu, Sebastian Valeriu, Mateescu, Theodor Dorin, Cherecheş, Nelu-Cristian, Efficiency improvement of photovoltaic panels by using air cooled heat sinks (2016) Energy Procedia, 85, p. 425432. , https://doi.org/10.1016/j.egypro.2015.12.223
dc.relation.referencesShan, Feng, Tang, Fang, Cao, Lei, Fang, Guiyin, Dynamic characteristics modeling of a hybrid photovoltaicthermal solar collector with active cooling in buildings (2014) Energy and Buildings, 78, pp. 215-221. , https://doi.org/10.1016/j.enbuild.2014.04.037
dc.relation.referencesSultan, Sakhr M., Ervina Efzan, N., Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications (2018) Solar Energy, 173, pp. 939-954. , https://doi.org/10.1016/j.solener.2018.08.032, andM
dc.relation.referencesVenkatesh, Telugu, Manikandan, S., Selvam, C., Harish, Sivasankaran, Performance enhancement of hybrid solar PV/T system with graphene based nanofluids (2022) International Communications in Heat and Mass Transfer, 130, p. 105794. , https://doi.org/10.1016/j.icheatmasstransfer.2021.105794
dc.relation.referencesMa, Xin, Yang, Liu, Xu, Guoying, Song, Jianzhong, A comprehensive review of MXene-based nanofluids: preparation, stability, physical properties, and applications (2022) Journal of Molecular Liquids, 365, p. 120037. , https://doi.org/10.1016/j.molliq.2022.120037
dc.relation.referencesWen, Xin, Ji, Jie, Li, Zhaomeng, Song, Zhiying, Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG (2022) Energy, 249, p. 123777. , https://doi.org/10.1016/j.energy.2022.123777
dc.relation.referencesGholami, Zakieh, Rahmati, Mohammad Hashem, Arabhosseini, Akbar, Gharzi, Mostafa, Combined cooling of photovoltaic module integrated with thermoelectric generators, by using earthenware water tank and ultrasonic humidifier: An experimental study (2022) Sustainable Energy Technologies and Assessments, 53, p. 102601. , https://doi.org/10.1016/j.seta.2022.102601
dc.relation.referencesKong, Xiangfei, Zhang, Lanlan, Li, Han, Wang, Yongzhen, Fan, Man, Experimental thermal and electrical performance analysis of a concentrating photovoltaic/thermal system integrated with phase change material (PV/T-CPCM) (2022) Solar Energy Materials and Solar Cells, 234, p. 111415. , https://doi.org/10.1016/j.solmat.2021.111415
dc.relation.referencesPeng, H. Y., Song, S. S., Liu, H. J., Dai, S. F., Zhang, F. L., Investigation of wind loading characteristics of roofmounted solar panels on tall buildings (2022) Sustainable Energy Technologies and Assessments, 54, p. 102800. , https://doi.org/10.1016/j.seta.2022.102800
dc.relation.referencesEl-Khawad, Livia, Bartkowiak, Dorota, Kümmerer, Klaus, Improving the end-of-life management of solar panels in Germany (2022) Renewable and Sustainable Energy Reviews, 168, p. 112678. , https://doi.org/10.1016/j.rser.2022.112678
dc.relation.referencesAgrawal, Sanjay, Tiwari, G. N., Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module (2011) Solar Energy, 85 (2), pp. 356-370. , https://doi.org/10.1016/j.solener.2010.11.013
dc.relation.referencesAgrawal, Sanjay, Tiwari, G. N., Exergoeconomic analysis of glazed hybrid photovoltaic thermal module air collector (2012) Solar Energy, 86 (9), pp. 2826-2838. , https://doi.org/10.1016/j.solener.2012.06.021
dc.relation.referencesJin, Goh L., Ibrahim, Adnan, Chean, Yee K., Daghigh, Roonak, Ruslan, Hafidz, Mat, Sohif, Othman, Mohd Y., Sopian, Kamaruzzaman, Evaluation of single-pass photovoltaic-thermal air collector with rectangle tunnel absorber (2010) American Journal of Applied Sciences, 7 (2), p. 277. , https://doi.org/10.3844/ajassp.2010.277.282
dc.relation.referencesCaluianu, Ionuţ-Răzvan, Băltăreţu, Florin, Thermal modelling of a photovoltaic module under variable free convection conditions (2012) Applied Thermal Engineering, 33, pp. 86-91. , https://doi.org/10.1016/j.applthermaleng.2011.09.016
dc.relation.referencesLee, S. S., Lai, S. O., Chong, K. K., A study on cooling of concentrator photovoltaic cells using CFD (2012) 2012 International Conference on Innovation Management and Technology Research, pp. 403-406. , https://doi.org/10.1109/ICIMTR.2012.6236427, IEEE
dc.relation.referencesChaabane, Monia, Mhiri, Hatem, Bournot, Philippe, Experimental validation of the thermal performance of a concentrating photovoltaic/thermal system (2014) 2014 5th International Renewable Energy Congress (IREC), pp. 1-6. , https://doi.org/10.1109/IREC.2014.6826995, IEEE
dc.relation.referencesBaloch, Ahmer AB, Bahaidarah, Haitham MS, Gandhidasan, P., An experimental study of the effect of converging channel heat exchanger on PV system (2015) 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1-4. , https://doi.org/10.1109/PVSC.2015.7356010, IEEE
dc.relation.referencesBaloch, Ahmer A. B., Bahaidarah, HaithamM. S., Gandhidasan, P., Computational fluid dynamics study for the optimization of surface temperature profile of photovoltaic/thermal system (2016) 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 0847-0849. , https://doi.org/10.1109/PVSC.2016.7749727, IEEE
dc.relation.referencesAhmad, E. Z., Fazlizan, A., Jarimi, H., Sopian, K., Ibrahim, A., Enhanced heat dissipation of truncated multi-level fin heat sink (MLFHS) in case of natural convection for photovoltaic cooling (2021) Case Studies in Thermal Engineering, 28, p. 101578. , https://doi.org/10.1016/j.csite.2021.101578
dc.relation.referencesMankani, Khushbu, Chaudhry, Hassam Nasarullah, Calautit, John Kaiser, Optimization of an air-cooled heat sink for cooling of a solar photovoltaic panel: A computational study (2022) Energy and Buildings, 270, p. 112274. , https://doi.org/10.1016/j.enbuild.2022.112274
dc.relation.referencesElbreki, A. M., Muftah, A. F., Sopian, K., Jarimi, H., Fazlizan, A., Ibrahim, A., Experimental and economic analysis of passive cooling PV module using fins and planar reflector (2021) Case Studies in Thermal Engineering, 23, p. 100801. , https://doi.org/10.1016/j.csite.2020.100801
dc.relation.referencesGardner, Karl A., Efficiency of extended surface (1945) Transactions of the American Society ofMechanical Engineers, 67 (8), pp. 621-628. , https://doi.org/10.1115/1.4018343
dc.relation.referencesBorkar, Dinesh S., Prayagi, Sunil V., Gotmare, Jayashree, Performance evaluation of photovoltaic solar panel using thermoelectric cooling (2014) International Journal of Engineering Research, 3 (9), pp. 536-539. , https://doi.org/10.17950/ijer/v3s9/904
dc.relation.referencesFarahani, Somayeh Davoodabadi, Alibeigi, Mahdi, Farahani, Hamed Hossienabadi, The Uniform Magnetic Field Efficacy on Heat Transfer of Nanofluid Flow in A Flat Tube (2021) Journal of Advanced Research in Numerical Heat Transfer, 5 (1), pp. 9-27
dc.relation.referencesFontenault, Bradley, Active forced convection photovoltaic/thermal panel efficiency optimization analysis (2012) Mechanical Engineering Master's Project, , Rensselaer at Hartford
dc.relation.referencesKhelifa, A., Touafek, K., Ben Moussa, H., Tabet, I., Haloui, H., Analysis of a hybrid solar collector photovoltaic thermal (PVT) (2015) Energy Procedia, 74, pp. 835-843. , https://doi.org/10.1016/j.egypro.2015.07.819
dc.relation.referencesBeltran-Urango, D., Herrera-Díaz, J. L., Posada-Montoya, J. A., Castañeda, L., Sierra-del Rio, J. A., Generación de Ingeniería en Energía Eléctrica Mediante Vórtices Gravitacionales (2016) Memorias Expo Tecnologias 2016, pp. 90-107. , Medellin, Antioquia
dc.relation.referencesCeballos, Y. Castañeda, Cardona Valencia, M., Zuluaga, Diego Hincapie, Sierra Del Rio, J., Vélez García, S., Influence of the number of blades in the power generated by a Michell Banki Turbine (2017) International Journal of Renewable Energy Research IJRER, 7 (4), pp. 1989-1997
dc.relation.referencesSánchez, Alejandro Ruiz, Muñoz, Angie Guevara, Andrés Sierra Del Rio, Jorge, Alejandro Posada Montoya, Jose, Numerical comparison of two runners for gravitational vortex turbine (2021) Engineering Transactions, 69 (1), pp. 3-17. , https://doi.org/10.24423/EngTrans.1165.2021012
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record