Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Navarro C
dc.contributor.authorPérez S
dc.contributor.authorFlórez E
dc.contributor.authorAcelas N
dc.contributor.authorMuñoz-Saldaña J.
dc.date.accessioned2023-10-24T19:24:30Z
dc.date.available2023-10-24T19:24:30Z
dc.date.created2023
dc.identifier.issn3014797
dc.identifier.urihttp://hdl.handle.net/11407/7959
dc.description.abstractCurrently, the large volumes of Sargassum biomass (Sgs) arriving on Caribbean coasts are a problem that must be solved quickly. One alternative is to obtain value-added products from Sgs. In this work, Sgs is demonstrated to be a high-performance Ca - bioadsorbent for phosphate removal by a heat pretreatment at 800 °C that produces biochar. According to XRD analysis, calcined Sgs (CSgs) have a composition of 43.68%, 40.51%, and 8.69% of Ca(OH)2, CaCO3, and CaO, making CSgs a promising material for phosphate removal and recovery. Results demonstrated that CSgs have a high capacity to adsorb P over a wide range of concentrations (25–1000 mg P/L). After P removal, at low P concentration, the adsorbent material is rich in apatite (Ca5(PO4)3OH), and at high P concentration, brushite (CaHPO4•2H2O) was the main P compound. The CSg reached a Qmax of 224.58 mg P/g, which is higher than other high-performance adsorbents reported in the literature. The phosphate adsorption mechanism was dominated by chemisorption, followed by precipitation according to the pseudo-second-order kinetic model. The solubility of P (74.5 wt%) in formic acid solution and the water-soluble P (24.8 wt%) for CSgs after P adsorption indicated that the final product presents the potential to be used as fertilizer for acid soils. This biomass's processability and high phosphate adsorption performance for P removal make CSgs a potential material for wastewater treatment, and subsequent use of these residues as fertilizer offers a circular economy solution to this problem. © 2023 Elsevier Ltdeng
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85160730778&doi=10.1016%2fj.jenvman.2023.118312&partnerID=40&md5=c7115f7dc870a10653ed31d47983715a
dc.sourceJ. Environ. Manage.
dc.sourceJournal of Environmental Managementeng
dc.subjectAdsorptioneng
dc.subjectCalcium phosphateeng
dc.subjectCircular economyeng
dc.subjectSargassum macroalgaeeng
dc.subjectWastewatereng
dc.titleSargassummacroalgae from Quintana Roo as raw material for the preparation of high-performance phosphate adsorbent from aqueous solutionseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.jenvman.2023.118312
dc.relation.citationvolume342
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationHernández-Navarro, C., Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, Querétaro, 76230, Mexico, Tecnológico Nacional de México CRODE-Celaya, Centro de Vinculación para la Innovación y Desarrollo Empresarial (CEVIDE), Departamento de Diseño y Desarrollo de Equipo, Col. Residencial Tecnológico, Manuel Orozco I. Berra 92, Guanajuato, Celaya, 38010, Mexico
dc.affiliationPérez, S., Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, Querétaro, 76230, Mexico
dc.affiliationFlórez, E., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationMuñoz-Saldaña, J., Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, Querétaro, 76230, Mexico
dc.relation.referencesAcelas, N.Y., Martin, B.D., López, D., Jefferson, B., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media (2015) Chemosphere, 119
dc.relation.referencesAcelas, N., Ramirez, A., Fl, E., Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesAl Mamun, M.A., Omori, Y., Papry, R.I., Kosugi, C., Miki, O., Rahman, I.M.M., Mashio, A.S., Hasegawa, H., Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions (2019) J. Appl. Phycol., 31, pp. 2669-2685
dc.relation.referencesAmador-Castro, F., García-Cayuela, T., Alper, H.S., Rodriguez-Martinez, V., Carrillo-Nieves, D., Valorization of pelagic sargassum biomass into sustainable applications: current trends and challenges (2021) J. Environ. Manag., 283
dc.relation.referencesAmann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., Egle, L., Environmental impacts of phosphorus recovery from municipal wastewater (2018) Resour. Conserv. Recycl., 130, pp. 127-139
dc.relation.referencesBacelo, H., Pintor, A.M.A., Santos, S.C.R., Boaventura, R.A.R., Botelho, C.M.S., Performance and prospects of different adsorbents for phosphorus uptake and recovery from water (2020) Chem. Eng. J., 381
dc.relation.referencesBrundavanam, S., Eddy, G., Poinern, J., Fawcett, D., Growth of flower-like brushite structures on magnesium substrates and their subsequent low temperature transformation to hydroxyapatite (2014) Am. J. Biomed. Eng., 4, pp. 79-87
dc.relation.referencesCao, H., Wu, X., Syed-Hassan, S.S.A., Zhang, S., Mood, S.H., Milan, Y.J., Garcia-Perez, M., Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell (2020) Bioresour. Technol., 318
dc.relation.referencesCao, Y., Shao, P., Chen, Y., Zhou, X., Yang, L., Shi, H., Yu, K., Luo, X., A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies (2021) Resour. Conserv. Recycl., 169
dc.relation.referencesChakrabarty, D., Mahapatra, S., Aragonite crystals with unconventional morphologies (1999) J. Mater. Chem., 9, pp. 2953-2957
dc.relation.referencesChávez, V., Uribe-Martínez, A., Cuevas, E., Rodríguez-Martínez, R.E., van Tussenbroek, B.I., Francisco, V., Estévez, M., Silva, R., Massive influx of pelagic sargassum spp. on the coasts of the mexican caribbean 2014–2020: challenges and opportunities (2020) Water (Switzerland), 12, pp. 1-24
dc.relation.referencesCheng, D.L., Ngo, H.H., Guo, W.S., Liu, Y.W., Zhou, J.L., Chang, S.W., Nguyen, D.D., Zhang, X.B., Bioprocessing for elimination antibiotics and hormones from swine wastewater (2018) Sci. Total Environ., 621, pp. 1664-1682
dc.relation.referencesChojnacka, K., Moustakas, K., Witek-Krowiak, A., Bio-based fertilizers: a practical approach towards circular economy (2020) Bioresour. Technol., 295
dc.relation.referencesChusuei, C.C., Goodman, D.W., Brushite (CaHPO 4⋅2H2O) by XPS (2001) Surf. Sci. Spectra, 8, pp. 39-44
dc.relation.referencesCong, Q., Chen, H., Liao, W., Xiao, F., Wang, P., Qin, Y., Dong, Q., Ding, K., Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme (2016) Carbohydr. Polym., 136, pp. 899-907
dc.relation.referencesda Costa, T.B., da Silva, T.L., Costa, C.S.D., da Silva, M.G.C., Vieira, M.G.A., Chromium adsorption using Sargassum filipendula algae waste from alginate extraction: batch and fixed-bed column studies (2022) Chem. Eng. J. Adv., 11
dc.relation.referencesDai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q., Hu, G., Zhao, J., Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal (2017) J. Environ. Manag., 198, pp. 70-74
dc.relation.referencesDavis, D., Simister, R., Campbell, S., Marston, M., Bose, S., McQueen-Mason, S.J., Gomez, L.D., Tonon, T., Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways (2021) Sci. Total Environ., 762
dc.relation.referencesDelgadillo-Velasco, L., Hernández-Montoya, V., Rangel-Vázquez, N.A., Cervantes, F.J., Montes-Morán, M.A., Moreno-Virgen, M.D.R., Screening of commercial sorbents for the removal of phosphates from water and modeling by molecular simulation (2018) J. Mol. Liq., 262, pp. 443-450
dc.relation.referencesdos Reis, G.S., Thue, P.S., Cazacliu, B.G., Lima, E.C., Sampaio, C.H., Quattrone, M., Ovsyannikova, E., Dotto, G.L., Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer (2020) J. Clean. Prod., 256
dc.relation.referencesDrouet, C., Apatite Formation: why it may not work as planned, and how to conclusively identify apatite compounds (2013) BioMed Res. Int., 2013, pp. 1-12
dc.relation.referencesFawzy, M.A., Gomaa, M., Hifney, A.F., Abdel-Gawad, K.M., Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties (2017) Carbohydr. Polym., 157, pp. 1903-1912
dc.relation.referencesFrancoeur, M., Yacou, C., Petit, E., Granier, D., Flaud, V., Gaspard, S., Brosillon, S., Ayral, A., Removal of antibiotics by adsorption and catalytic ozonation using magnetic activated carbons prepared from Sargassum sp (2023) J. Water Process Eng., 53
dc.relation.referencesGarcía-Sánchez, M., Graham, C., Vera, E., Escalante-Mancera, E., Álvarez-Filip, L., van Tussenbroek, B.I., Temporal changes in the composition and biomass of beached pelagic Sargassum species in the Mexican Caribbean (2020) Aquat. Bot., 167
dc.relation.referencesGhozali, M., Meliana, Y., Chalid, M., Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste, Mater (2021) Today Proc, 44, pp. 2131-2134
dc.relation.referencesGonzález-Nieto, D., Oliveira, M.C., Resendiz, M.L.N., Dreckmann, K.M., Mateo-Cid, L.E., Sentíes, A., Molecular assessment of the genus Sargassum (Fucales, Phaeophyceae) from the Mexican coasts of the Gulf of Mexico and Caribbean, with the description of S. xochitlae sp. nov (2020) Phytotaxa, 461, pp. 254-274
dc.relation.referencesGordillo Sierra, A.R., Amador-Castro, L.F., Ramírez-Partida, A.E., García-Cayuela, T., Carrillo-Nieves, D., Alper, H.S., Valorization of Caribbean Sargassum biomass as a source of alginate and sugars for de novo biodiesel production (2022) J. Environ. Manag., 324
dc.relation.referencesGu, S., Fu, B., Ahn, J.-W., Fang, B., Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea (2021) J. Clean. Prod., 280
dc.relation.referencesIdowu, B., Cama, G., Deb, S., Di Silvio, L., In vitro osteoinductive potential of porous monetite for bone tissue engineering (2014) J. Tissue Eng., 5
dc.relation.referencesKasprzyk, M., Czerwionka, K., Gajewska, M., Waste materials assessment for phosphorus adsorption toward sustainable application in circular economy (2021) Resour. Conserv. Recycl., 168
dc.relation.referencesKumar, S., Sahoo, D., Levine, I., Assessment of nutritional value in a brown seaweed Sargassum wightii and their seasonal variations (2015) Algal Res., 9, pp. 117-125
dc.relation.referencesLanghans, C., Beusen, A.H.W., Bouwman, A.F., Target of doubling smallholder productivity (2022) Nature, 5
dc.relation.referencesLee, J.I., Oh, J.S., Yoo, S.C., Jho, E.H., Lee, C.G., Park, S.J., Removal of phosphorus from water using calcium-rich organic waste and its potential as a fertilizer for rice growth (2022) J. Environ. Chem. Eng., 10
dc.relation.referencesLee, J.I., Kim, J.M., Yoo, S.C., Jho, E.H., Lee, C.G., Park, S.J., Restoring phosphorus from water to soil: using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer (2022) Chemosphere, 287
dc.relation.referencesLee, J.-I., Oh, J.-S., Yoo, S.-C., Jho, E.H., Lee, C.-G., Park, S.-J., Removal of phosphorus from water using calcium-rich organic waste and its potential as a fertilizer for rice growth (2022) J. Environ. Chem. Eng., 10
dc.relation.referencesLi, X., Xie, Y., Jiang, F., Wang, B., Hu, Q., Tang, Y., Luo, T., Wu, T., Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: behaviors and mechanisms (2020) Sci. Total Environ., 709
dc.relation.referencesLima, É.C., Adebayo, M.A., Machado, F.M., Kinetic and equilibrium models of adsorption (2015) Carbon Nanostructures, pp. 33-69. , Springer International Publishing
dc.relation.referencesLimousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M., Sorption isotherms: a review on physical bases, modeling and measurement (2007) Appl. Geochem., 22, pp. 249-275
dc.relation.referencesLiu, Q., Fang, Z., Liu, Y., Liu, Y., Xu, Y., Ruan, X., Zhang, X., Cao, W., Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO (2019) Waste Manag., 87, pp. 71-77
dc.relation.referencesLiu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Sci. Total Environ., 666, pp. 694-702
dc.relation.referencesLiu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Sci. Total Environ., 666, pp. 694-702
dc.relation.referencesMilledge, J.J., Maneein, S., Arribas López, E., Bartlett, D., Sargassum inundations in Turks and caicos: methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses (2020) Energies, 13, p. 1523
dc.relation.referencesNardelli, A.E., Chiozzini, V.G., Braga, E.S., Chow, F., Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution (2019) J. Appl. Phycol., 31, pp. 847-856
dc.relation.referencesOrozco-González, J.G., Amador-Castro, F., Gordillo-Sierra, A.R., García-Cayuela, T., Alper, H.S., Carrillo-Nieves, D., Opportunities surrounding the use of sargassum biomass as precursor of biogas, bioethanol, and biodiesel production (2022) Front. Mar. Sci., 8, pp. 1-20
dc.relation.referencesPanagiotou, E., Kafa, N., Koutsokeras, L., Kouis, P., Nikolaou, P., Constantinides, G., Vyrides, I., Turning calcined waste egg shells and wastewater to Brushite: phosphorus adsorption from aqua media and anaerobic sludge leach water (2018) J. Clean. Prod., 178, pp. 419-428
dc.relation.referencesPap, S., Gaffney, P.P.J., Bremner, B., Turk Sekulic, M., Maletic, S., Gibb, S.W., Taggart, M.A., Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents (2022) Sci. Total Environ., 814
dc.relation.referencesPérez, S., Muñoz-Saldaña, J., Acelas, N., Flórez, E., Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesPérez, S., Muñoz-Saldaña, J., Garcia-Nunez, J.A., Acelas, N., Flórez, E., Unraveling the Ca–P species produced over the time during phosphorus removal from aqueous solution using biocomposite of eggshell-palm mesocarp fiber (2022) Chemosphere, 287
dc.relation.referencesPérez, S., Giraldo, S., Forgionny, A., Flórez, E., Acelas, N., Eco-friendly reuse of agricultural wastes to produce biocomposites with high potential in water treatment and fertilizers (2022) Biomass Convers. Biorefinery
dc.relation.referencesPérez, S., Giraldo, S., Forgionny, A., Flórez, E., Acelas, N., Eco-friendly reuse of agricultural wastes to produce biocomposites with high potential in water treatment and fertilizers (2022) Biomass Convers. Biorefinery
dc.relation.referencesQuisperima, A., Pérez, S., Flórez, E., Acelas, N., Valorization of potato peels and eggshells wastes: Ca-biocomposite to remove and recover phosphorus from domestic wastewater (2022) Bioresour. Technol., 343
dc.relation.referencesRaikar, G.N., Ong, J.L., Lucas, L.C., Hydroxyapatite characterized by XPS (1996) Surf. Sci. Spectra, 4, pp. 9-13
dc.relation.referencesRajan, S.S.S., Brown, M.W., Boyes, M.K., Upsdell, M.P., Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks (1992) Fert. Res., 32, pp. 291-302
dc.relation.referencesRamesh, P., Rajendran, A., Photocatalytic dye degradation activities of green synthesis of cuprous oxide nanoparticles from Sargassum wightii extract (2023) Chem. Phys. Impact., 6
dc.relation.referencesRamirez, A., Giraldo, S., García-Nunez, J., Flórez, E., Acelas, N., Phosphate removal from water using a hybrid material in a fixed-bed column (2018) J. Water Process Eng., 26, pp. 131-137
dc.relation.referencesRamirez, A., Ocampo, R., Giraldo, S., Padilla, E., Flórez, E., Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: kinetics, equilibrium, and density functional theory calculations (2020) J. Environ. Chem. Eng., 8
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Flórez, E., Acelas, N., Recovering phosphorus from aqueous solutions using water hyacinth (Eichhornia crassipes) toward sustainability through its transformation to apatite (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Flórez, E., Acelas, N., Recovering phosphorus from aqueous solutions using water hyacinth (Eichhornia crassipes) toward sustainability through its transformation to apatite (2021) J. Environ. Chem. Eng., 9
dc.relation.referencesRandall, D.G., Naidoo, V., Urine: the liquid gold of wastewater (2018) J. Environ. Chem. Eng., 6, pp. 2627-2635
dc.relation.referencesRibeiro, I.C.A., Teodoro, J.C., Guilherme, L.R.G., Melo, L.C.A., Hydroxyl-eggshell: a novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions (2020) J. Clean. Prod., 274
dc.relation.referencesRodríguez-Martínez, R.E., Roy, P.D., Torrescano-Valle, N., Cabanillas-Terán, N., Carrillo-Domínguez, S., Collado-Vides, L., García-Sánchez, M., van Tussenbroek, B.I., Element Concentrations in Pelagic Sargassum along the Mexican Caribbean Coast in 2018-2019, PeerJ. 2020 (2020), pp. 1-19
dc.relation.referencesRossignolo, J.A., Felicio Peres Duran, A.J., Bueno, C., Martinelli Filho, J.E., Savastano Junior, H., Tonin, F.G., Algae application in civil construction: a review with focus on the potential uses of the pelagic Sargassum spp. biomass (2022) J. Environ. Manag., 303
dc.relation.referencesRoychowdhury, T., Bahr, S., Dietrich, P., Meyer, M., Thißen, A., Linford, M.R., Calcite (CaCO3), by near-ambient pressure XPS (2019) Surf. Sci. Spectra, 26
dc.relation.referencesSaberzadeh Sarvestani, F., Esmaeili, H., Ramavandi, B., Modification of Sargassum angustifolium by molybdate during a facile cultivation for high-rate phosphate removal from wastewater: structural characterization and adsorptive behavior (2016) 3 Biotech, 6, pp. 1-12
dc.relation.referencesSaldarriaga-Hernandez, S., Hernandez-Vargas, G., Iqbal, H.M.N., Barceló, D., Parra-Saldívar, R., Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: circular economy approach (2020) Sci. Total Environ., 715
dc.relation.referencesSun, C., Cao, H., Huang, C., Wang, P., Yin, J., Liu, H., Tian, H., Liu, Z., Eggshell based biochar for highly efficient adsorption and recovery of phosphorus from aqueous solution: kinetics, mechanism and potential as phosphorus fertilizer (2022) Bioresour. Technol., 362
dc.relation.referencesTrinanes, J., Putman, N.F., Goni, G., Hu, C., Wang, M., Monitoring pelagic Sargassum inundation potential for coastal communities (2021) J. Oper. Oceanogr.
dc.relation.referencesvan Tussenbroek, B.I., Hernández Arana, H.A., Rodríguez-Martínez, R.E., Espinoza-Avalos, J., Canizales-Flores, H.M., González-Godoy, C.E., Barba-Santos, M.G., Collado-Vides, L., Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities (2017) Mar. Pollut. Bull., 122, pp. 272-281
dc.relation.referencesVázquez-Delfín, E., Freile-Pelegrín, Y., Salazar-Garibay, A., Serviere-Zaragoza, E., Méndez-Rodríguez, L.C., Robledo, D., Species composition and chemical characterization of Sargassum influx at six different locations along the Mexican Caribbean coast (2021) Sci. Total Environ., 795
dc.relation.referencesWang, M., Hu, C., Barnes, B.B., Mitchum, G., Lapointe, B., Montoya, J.P., The great Atlantic Sargassum belt (2019) Science, 364, pp. 83-87. , 80
dc.relation.referencesWilliams, A., Feagin, R., Sargassum as a natural solution to enhance dune plant growth (2010) Environ. Manag., 46, pp. 738-747
dc.relation.referencesWu, B., Wan, J., Zhang, Y., Pan, B., Lo, I.M.C., Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms (2019) Environ. Sci. Technol., 54. , acs.est
dc.relation.referencesWu, F., Yu, Q., Gauvin, F., Brouwers, H.J.H., A facile manufacture of highly adsorptive aggregates using steel slag and porous expanded silica for phosphorus removal (2021) Resour. Conserv. Recycl., 166
dc.relation.referencesYang, F., Sui, L., Tang, C., Li, J., Cheng, K., Xue, Q., Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances (2021) Sci. Total Environ., 768
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem