Show simple item record

dc.contributor.authorTaborda A
dc.contributor.authorPortela J.P
dc.contributor.authorLopez-Sanchez J
dc.contributor.authorDaniele L
dc.contributor.authorMoreno D
dc.contributor.authorBlessent D.
dc.date.accessioned2023-10-24T19:26:12Z
dc.date.available2023-10-24T19:26:12Z
dc.date.created2022
dc.identifier.issn3756742
dc.identifier.urihttp://hdl.handle.net/11407/8131
dc.description.abstractGeochemical surveying is one of the techniques of geothermal exploration that include geothermometry to estimate the temperature of deep reservoirs. This work provides the temperature estimation of geothermal resources, geochemical analysis, and a conceptual model of the geothermal reservoir located to the western flank of the Nevado del Ruiz Volcano (NRV), a mayor geothermal target for energy production in Colombia. Hydrogeochemical data (pH, temperature, electrical conductivity, major, minor, and trace elements) were obtained from water samples collected at several hot springs located to the west of the NRV between 2017 and 2019. The data available from the Colombian Geological Survey database were also included in the analysis to better characterize the hot spring behavior. The hydrogeochemical tools Liquid analysis Powell and Cumming and GQAnalyzer software were used to draw ternary diagrams and to use geothermometers. The results allowed separating the hot springs into two groups, according with their chemical characteristics and spatial location: Nereidas 1, Nereidas 2, Nereidas Pozo, and Chorro Negro hot springs belong to Group 1 (G1), located closer to the NRV; on the other hand, Geysers, El Bosque-La Piscina, Quebrada Negra, and Rio Claro, which are located further from NRV, belong to Group 2 (G2). The latter is made of mature and chloride waters, indicating a water-rock equilibrated interaction with most of ions. The results of this study contribute to the future Colombian geothermal development, and the methodology and analysis can be applied to geothermal systems with similar geological characteristics to infer a conceptual model useful for geothermal exploration. © 2022 Elsevier B.V.eng
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134883395&doi=10.1016%2fj.gexplo.2022.107049&partnerID=40&md5=6c8c13e404d1bfbc1b9ddfea59d6920c
dc.sourceJ. Geochem. Explor.
dc.sourceJournal of Geochemical Explorationeng
dc.subjectColombiaeng
dc.subjectFaultseng
dc.subjectFluid circulationeng
dc.subjectOutfloweng
dc.subjectUpfloweng
dc.titleTemperature estimation of the Nevado del Ruiz Volcano geothermal reservoir: Insight from western hot springs hydrogeochemistryeng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1016/j.gexplo.2022.107049
dc.relation.citationvolume240
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationTaborda, A., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationPortela, J.P., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationLopez-Sanchez, J., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationDaniele, L., Departamento de Geología-Centro de Excelencia en Geotermia de los Andes, Universidad de Chile, Santiago de Chile, Chile
dc.affiliationMoreno, D., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationBlessent, D., Programa de Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAcevedo, A.M., Arias, G., Estado Actual de la Producción de Energía Geotérmica en Colombia. Univ. Nac. Abierta y a Distancia y Esc. de Cienc. Agrar. Pecu. y del Medio Ambient. Manizalez: UNAD (2017)
dc.relation.referencesAlfaro, C., Aguirre, C.A., Jaramillo, H.L.F., Inventario de fuentes termales en el Parque Nacional Natural de los Nevados (2002), Ingeominas Bogotá
dc.relation.referencesAlfaro, C., Velandia, F., Cepeda, H., Colombian Geothermal Resources. Proc. World Geotherm. Congr. Antalya: IGA (2005)
dc.relation.referencesAlfaro, C., Rueda-Gutiérrez, J.B., Casallas, Y., Rodríguez, G., Malo, J., Approach to the geothermal potential of Colombia (2021) Geothermics
dc.relation.referencesAlmaguer, J.L., Estudios magnetotelúrico con fines de interés geotérmico en sector Norte del Nevado del Ruíz, Colombia (2013), Universidad Nacional Autónoma de México MSc thesis
dc.relation.referencesAquilina, L., Pauwels, H., Genter, A., Fouillac, C., Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: geochemical investigation of a geothermal reservoir (1967) Geochim. Cosmochim. Acta, 61 (20), pp. 4281-4295
dc.relation.referencesArnórsson, S., Bjarnason, J.O., Giroud, N., Gunnarsson, I., Stefánsson, A., Sampling and analysis of geothermal fluids (2006) Geofluids, 6, pp. 203-216
dc.relation.referencesÁvila, J.P., Cárdenas, L.S., García-Cabrejo, O., Barrantes, L., (2018) GQAnalyzer: un paquete en R para el análisis de composición química de fluidos hidrotermales, p. 7. , AGEOCOL Bogotá
dc.relation.referencesBerrios, C.A., Caracterización geoquímica de sistemas geotermales en zonas de transición: Volcanes Nevados de Chillán y Copahue. Santiago de Chile: Univ. de Chile (2015), http://repositorio.uchile.cl/handle/2250/134130, Retrieved from
dc.relation.referencesBillarent-Cedillo, A., Levresse, G., Ferrari, L., Inguaggiato, C., Inguaggiato, S., Hernández-Pérez, E., Hernández-Espriú, A., Arias-Paz, A., Deciphering origins and pathways of low-enthalpy geothermal waters in the unconventional geothermal system of Juchipila graben (Central Mexico) (2021) Geothermics, 94
dc.relation.referencesBotero, Á., Osorio, M., Modelo geológico- estructural del campo volcánico monogenético villamaría-termales, flanco occidental de la cordillera central de Colombia (2017), Universidad de Caldas Manizales
dc.relation.referencesBrehme, M., Blöcher, G., Cacace, M., Deon, F., Moeck, I., Wiegand, B., Kamah, Y., Huenges, E., Characterizing permeability structures in geothermal reservoirs – a case study in Lahendong (2016) Proc. of 41st Workshop on Geothermal Reservoir Engineering, , Stanford University California SGP-TR-209
dc.relation.referencesCeballos Gutiérrez, D., Análisis geológico y estructural detallado de una zona del proyecto geotérmico en el valle de las nereidas, macizo volcánico Nevado del Ruiz, para contribuir en el proceso de exploración geotérmica, CHEC (2017), Trabajo de grado para optar al título de Geológo. Universidad de Caldas Manizales
dc.relation.referencesCHEC, Central Hidroeléctrica de Caldas. Instituto Colombiano de Energía Eléctrica (ICEL), Consultoría Técnica Colombiana Ltda. (CONTECOL) & Geotérmica Italiana (1983) Investigación Geotérmica. Macizo volcánico del Ruiz. Fase II, Etapa A, , CHEC & ICE Bogotá
dc.relation.referencesCHEC, C.H.D.C., Investigación geotérmica en la región del Macizo Volcánico del Ruiz (Colombia), Fase I. Programa de trabajo (1979)
dc.relation.referencesCurewitz, D., Karson, J.A., Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction (1997) J. Volcanol. Geoth. Res., 79 (3-4), pp. 149-168
dc.relation.referencesDaniele, L., Taucare, M., Viguier, B., Arancibia, G., Aravena, D., Roquer, T., Sepúlveda, J., Morata, D., Exploring the shallow geothermal resources in the chilean Southern Volcanic Zone: Insight from the Liquiñe thermal springs (2020) J. Geochem. Explor., 218
dc.relation.referencesDelmelle, P., Bernard, A., The remarkable chemistry of sulfur in hyper-acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe (2015) Volcanic Lakes, 239-259
dc.relation.referencesDNP, Bases del Plan Nacional de Desarrollo 2018–2022 (2019), Gobierno de Colombia, Departamento Nacional de Planeación Bogotá
dc.relation.referencesElango, L., Kannan, R., Rock–water interaction and its control on chemical composition of groundwater (2007) Developments in Environmental Science, 5, pp. 229-243. , D. Sarkar R. Datta R. Hannigan Elsevier
dc.relation.referencesFederico, C., Inguaggiato, S., Chacón, Z., Makario Londoño, J., Gil, E., Alzate, D., Vapour discharges on Nevado del Ruiz during the recent activity: Clues Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hyfrothermal system and its effects on thermal springs (2017) J. Volcanol. Geoth. Res., 346, pp. 40-53
dc.relation.referencesGiggenbach, W., Goguel, R., Collection and analysis of geothermal and volcanic water and gas discharge (1989) Department of Scientefic and Industrial Research. New Zealand, , 4th edition Department of Scientific and Industrial Research, Chemistry Division Petone, New Zealand
dc.relation.referencesGiggenbach, W.F., Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators (1988) Geochim. Cosmochim. Acta, 52, pp. 2749-2765
dc.relation.referencesGiggenbach, W.F., Garcia, N., Londoño, C.A., Rodriguez, V.L., Rojas, G.N., The chemistry of fumarolic vapor and thermal-spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system, Colombia (1990) J. Volcanol. Geotherm. Res., 42 (1-2), pp. 13-39
dc.relation.referencesGöb, S., Loges, A., Nolde, N., Bau, M., Jacob, D., Markl, G., Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water–rock interaction (2013) Appl. Geochem., 33, pp. 127-152
dc.relation.referencesGómez Díaz, E., Potencial geotérmico en el Sur de Colombia a partir de análisis geoquímicos de Fuentes termales
dc.relation.referencesCaso de estudio Volcan Puracé y Complejo Volcánico Doña Juana (2017), Univ. EAFIT Medellín
dc.relation.referencesGómez Díaz, E., Marín Cerón, M., Preliminary geochemical study of thermal waters at the Puracé volcano system (South Western Colombia): an approximation for geothermal exploration (2018) Bol. Geol., 40 (1), p. 43
dc.relation.referencesGómez Diaz, E., Marín Cerón, M., Hydrogeochemical characteristics at Doña Juana complex (SW Colombia): a new area for geothermal exploration in the Northern Andes region (2020) Geothermics, 84
dc.relation.referencesGonzalez Garcia, J., Jessell, M., A 3D geological model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of geological uncertainty using a stochastic approach based on Bézier curve design (2016) Tectonophysics, pp. 139-157
dc.relation.referencesGonzalez Garcia, J., Hauser, J., Annetts, D., Franco, J., Valllejo, E., Regenaurer-Lieb, K., Nevado Del Ruiz Volcano (Colombia): 3D model combining geological and geophysical information (2015) Proc. World Geotherm. Cong, p. 11. , IGA Melbourne
dc.relation.referencesHart, S., K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts (1969) Earth Planet. Sci. Lett., 6 (4), pp. 295-303
dc.relation.referencesHounslow, A., Water Quality Data Analysis and Interpretation (1995), CRC Press LLC, Lewis Publishers Boca Raton
dc.relation.referencesInguaggiato, S., Londoño, J., Chacón, Z., Liotta, M., Gil, E., Alzate, D., The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013 (2017) Chem. Geol., 469, pp. 60-68
dc.relation.referencesKaasalainen, H., Stefánsson, A., Giroud, N., Stefán, A., The geochemistry of trace elements in geothermal fluids, Iceland (2015) Appl. Geochem., 62, pp. 207-223
dc.relation.referencesLi, X., Huang, X., Liao, X., Zhang, Y., Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, Southwestern China (2020) Int. J. Environ. Res. Public Health, 17 (2), p. 500
dc.relation.referencesLondoño, J., Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, Central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes (2016) J. Volcanol. Geotherm. Res., 324, pp. 156-168
dc.relation.referencesLondoño, J.M., Sudo, Y., Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia) (2002) J. Volcanol. Geoth. Res., 119 (1-4), pp. 61-87
dc.relation.referencesMartinez, L., Valencia, L., Ceballos, J., Narváez, B., Pulgarín, B., Correa, A., Navarro, A.S., Pardo, N., Geología y Estratigrafía del Complejo Volcánico Nevado del Ruiz (2014), SGC Bogotá-Manizales-Popayán
dc.relation.referencesMarzolf, N., Emprendimiento de le energía geotérmica en Colombia (2013), Banco interam. de desarro. e Isagen Washington D.C
dc.relation.referencesMaureira, G.A., Alteración hidrotermal y geoquímica de las aguas termales en el área de la concesión geotérmica Licancura III, I región de Tarapacá, Chile (2013), Univ. de Chile Santiago de Chile
dc.relation.referencesMaya, M., Gonzalez, H., Unidades litodémicas en la Cordillera Central de Colombia (1995) Bol. Geol., 38 (2), pp. 43-57
dc.relation.referencesMejia, E., Velandia, F., Zuluaga, C., López, J., Cramer, T., Análisis estructural al noreste del Volcán Nevado del Ruíz Colombia- Aporte a la exploración geotérmica. (UIS, Ed.) (2012) Bol. Geol., 34 (1), pp. 27-41
dc.relation.referencesMinissale, A., Donato, A., Procesi, M., Pizzino, L., Giammarnco, S., Systematic review of geochemical data from thermal springs, gas vents and fumaroles of Southern Italy for geothermal favourability mapping (2019) Earth-Sci. Rev., 188
dc.relation.referencesLa transición energética de colombia, memorias al congreso. Bogotá: Minenergía. Obtenido de (2020), https://www.minenergia.gov.co/documents/10192/24226685/Memorias+al+Congreso+2019-2020.pdf
dc.relation.referencesMnjokava, T., (2007) Interpretation of exploration geochemical data for geochemical fluids drom the geothermal field of the Rungwe Volcanin area, SW-Tanzania, pp. 303-332. , U.N. University Rep
dc.relation.referencesMoeck, I., Catalog of geothermal play types based on geologic controls (2014) Renew. Sust. Energ. Rev., 37, pp. 867-882
dc.relation.referencesMonsalve, M.L., Rodriguez, G.I., Mendez, R.A., Bernal, N.F., Geology of the Well Nereidas 1, Nevado del Ruiz Volcano, Colombia (1998) Geotherm. Resourc Counc., 22, p. 6
dc.relation.referencesMoreno, D., Lopez-Sanchez, J., Blessent, D., Raymond, J., Fault characterization and heat-transfer modeling to the Northwest of Nevado del Ruiz Volcano (2018) J. S. Am. Earth Sci., 88, pp. 50-63
dc.relation.referencesMosquera, D., Marín, P., Vesga, C., Gonzalez, H., Geología de la plancha 225 Nevado del Ruiz. Instituto de Investigación e Investigación Geocientífica, Minero-Ambiental y Nuclear (1998), Ministerio de Minas y Energía
dc.relation.referencesNegri, A., Daniele, L., Aravena, D., Muñoz, M., Delgado, A., Decoding fjord water contribution and geochemical processes in the AysenDecoding fjord water contribution and geochemical processes in the Aysen (2018) J. Geochem. Explor., 185, pp. 1-13
dc.relation.referencesO'Brien, Mark, J., Hydrogeochemical Characteristics of the Ngatamariki Geothermal Field and a Comparison With the Orakei Korako Thermal Area, Taupo Volcanic Zone, New Zealand. New Zealand (2010), University of Canterbury. Geological Sciences
dc.relation.referencesOssa Vasco, J.A., Cartografía detallada de un área del proyecto geotérmico. Informe de pasantía para optar el título de geólogo (2018), Univ. de Caldas Manizales
dc.relation.referencesPacheco Acosta, M.A., Viera Revelo, L.S., Metodología geoquímica aplicada a Fluidos Geotermales (2015), Univ. de El Salvador San Salvador
dc.relation.referencesPlan de Manejo 2017-2022-Parque Nacional Natural Los Nevados. Manizales: Parques Nacionales. Obtenido de (2017), http://www.parquesnacionales.gov.co/portal/wp-content/uploads/2013/12/Plan-de-manejo-PNN-Los-Nevados-2017.pdf
dc.relation.referencesPetrović Pantić, T., Birke, M., Petrović, B., Nikolo, J., Dragišić, V., Živanović, V., Hydrogeochemistry of thermal groundwaters in the Serbian crystallinecore region (2015) J. Geochem. Explor., 159, pp. 101-114
dc.relation.referencesPope, J., Brown, K., Geochemistry of discharge at Waiotapu geothermal area, New Zealand – Trace elements and temporal changes (2014) Geothermics, 51, pp. 253-269
dc.relation.referencesPorras Martín, J., Nieto Lopez-Guerrero, P., Alvarez Fernandez, C., Fernández Uría, A., Gimeno, M., Calidad y contaminación de las aguas subterráneas en España (1985), IGME & EPTISA España
dc.relation.referencesPoveda, G., Álvarez, D., Rueda, Ó., Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots (2011) Clim. Dyn., 2233-2249
dc.relation.referencesPowell, T., Cumming, W., (2010) Spreadsheets for Geothermal Water and Gas Geochemistry. Proc. of Thirty-Fifth Workshop on Geothermal Reservoir Engineering, p. 10. , Stanford Univ. California
dc.relation.referencesRahayudin, Y., Kashiwaya, K., Tada, Y., Iskandar, I., Koike, K., Atmaja, R., Herdianita, N., On the origin and evolution of geothermal fluids in the Patuha Geothermal Field, Indonesia based on geochemical and stable isotope data (2020) Appl. Geochem., 114
dc.relation.referencesRailsback, L., An earth scientist's periodic table of the elements and their ions (2003) Geology, 31, pp. 737-740
dc.relation.referencesRayo-Rocha, L., Evolución geoquímica y térmica del Volcán Nevado del Ruiz (2012), Univ. Nac. de Colomb. Bogotá
dc.relation.referencesRegenspurg, S., Wiersberg, T., Brandt, W., Huenges, E., Saadat, A., Schmidt, K., Zimmermann, G., Geochemical properties of saline geothermal fluids from the in-situgeothermal laboratory Groß Sch ̈onebeck (Germany) (2010) Chem. Erde, 70, pp. 3-12
dc.relation.referencesRichter, A., The first geothermal power unit has started operations in Colombia, utilising co-produced fluids from oil production. ThinkGeoEnergy (2021), https://www.thinkgeoenergy.com/first-geothermal-power-plant-inaugurated-in-colombia/
dc.relation.referencesRodger, B., Eaton, A., Rise, E., Standard methods for the examination of water and wastewater (2017) Washington: American Public Health Association, American Water Works Association, , 23 ed. Water Environment Federation
dc.relation.referencesRybach, L., Geothermal energy: sustainability and the environment (2003) Geothermics, 32 (4-6), pp. 463-470
dc.relation.referencesSalazar, S.S., Muñoz, Y., Ospino, A., Analysis of geothermal energy as an alternative source for electricity in Colombia (2017) Geotherm. Energy, 5, p. 27
dc.relation.referencesSanchez Torrado, A.E., Modelación geoquímica de las interacciones fluido-roca en el Volcán Nevado del Ruiz- Flanco Noroccidental, Colombia. Tesis para optar al título de Magister en Ciencias-Geología, Univ. Nac. de Colomb., Bogotá (2014)
dc.relation.referencesSanchez-Alfaro, P., Reich, M., Arancibia, G., Pérez-Flores, P., Cembrano, J., Driesner, T., Lizama, M., Campos, E., Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation (2016) J. Volcanol. Geotherm. Res., 324, pp. 88-104
dc.relation.referencesSellerino, M., Forte, G., Ducci, D., Dentification of the natural background levels in the Phlaegreanfieldsgroundwater body (Southern Italy) (2019) J. Geochem. Explor., 200, pp. 181-192
dc.relation.referencesSomma, R., Blessent, D., Raymond, J., Constance, M., Cotton, L., Natale, G.D., Fedele, A., Wiersberg, T., Review of recent drilling projects in unconventional geothermal resources at Campi Flegrei Caldera, Cornubian Batholith, and Williston Sedimentary Basin (2021) Energies, 2021 (14), p. 3306
dc.relation.referencesStevanovic, Z., Chapter 9 - Utilization and regulation of springs (2010) Engineering, Theory, Management, and Sustainability, pp. 339-388. , N. Kresic Z. Stevanovic Elsevier Inc. Oxford
dc.relation.referencesStix, J., Layne, G., Williams, S., Mechanisms of degassing at Nevado del Ruiz volcano, Colombia (2003) J. Geol. Soc., 160, pp. 507-521
dc.relation.referencesSturchio, N.C., Williams, S.N., Garcua, N.P., Londono, A.C., The hydrothermal system of Nevado del Ruiz volcano, Colombia (1988) Bull. Volcanol., 50, pp. 399-412
dc.relation.referencesTalybov, M., Abdulagatov, I., High-temperature and high-pressure PVT measurements and derived thermodynamic properties of geothermal fluids from East Turkey (2021) Geothermics, 95
dc.relation.referencesToro Toro, L., Borero-Peña, C., Ayala Carmona, L., Petrografía y Geoquímica de las rocas ancestrales del Volcan Nevado del Ruiz (2010) Bol. Geol., 32 (1), pp. 95-105
dc.relation.referencesUPME, Integración de las energías renovables no convenciales en Colombia-CONVENIO ATN/FM-12825-CO (2015), Ministerio de Minas Bogotá
dc.relation.referencesVargas, C.A., Alfaro, C., Briceño, L.A., Alvarado, I., Quintero, W., Mapa Geotérmico de Colombia. Proc. of X Simp. Bolivariano Explor. Petrolera en Cuencas Subandinas. Cartagena: Simp. Bolivariano (2009)
dc.relation.referencesWrage, J., Tardani, D., Reich, M., Daniele, L., Arancibia, G., Cembrano, J., Sánchez-Alfaro, P., Pérez-Moreno, R., Geochemistry of thermal waters in the Southern Volcanic Zone, Chile – Implications for structural controls on geothermal fluid composition (2017) Chem. Geol., 466, pp. 545-561
dc.relation.referencesZaczek, J., Porowski, A., Hydrogeological settings and origin of grounwater composition in the southern part of the Gorce MTS, Kowaniec Maly catchment (2017) Ann. Soc. Geol. Pol., 87, pp. 183-197
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record