Show simple item record

dc.contributor.authorBravo S
dc.contributor.authorPacheco M
dc.contributor.authorCorrea J.D
dc.contributor.authorChico L.
dc.date.accessioned2023-10-24T19:26:27Z
dc.date.available2023-10-24T19:26:27Z
dc.date.created2022
dc.identifier.issn14639076
dc.identifier.urihttp://hdl.handle.net/11407/8147
dc.description.abstractThe electronic structure of monolayer pentagonal palladium diselenide (PdSe2) is analyzed from the topological band theory perspective. Employing first-principles calculations, effective models and symmetry indicators, we find that the low-lying conduction bands are topologically nontrivial, protected by time reversal and crystalline symmetries. Numerical evidence supporting the nontrivial character of the bands is presented. Furthermore, we obtain a relevant physical response from the topological viewpoint, such as the spin Hall conductivity. © 2022 The Royal Society of Chemistry.eng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132936299&doi=10.1039%2fd2cp01822e&partnerID=40&md5=c901d9b2889ed578c9de41c517b6871d
dc.sourcePhys. Chem. Chem. Phys.
dc.sourcePhysical Chemistry Chemical Physicseng
dc.titleTopological bands in the PdSe2 pentagonal monolayereng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicasspa
dc.type.spaArtículo
dc.identifier.doi10.1039/d2cp01822e
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationBravo, S., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
dc.affiliationPacheco, M., Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationChico, L., Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
dc.relation.referencesFiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L., (2014) Nat. Nanotechnol., 9, pp. 768-779
dc.relation.referencesMiró, P., Audiffred, M., Heine, T., (2014) Chem. Soc. Rev., 43, pp. 6537-6554
dc.relation.referencesSaptarshi, D., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M., (2015) Annu. Rev. Mater. Res., 45, pp. 1-27
dc.relation.referencesNovoselov, K., Mishchenko, A., Carvalho, A., Castro Neto, A.H., (2016) Science, 353, p. 461
dc.relation.referencesTang, C.-P., Xiong, S.-J., Shi, W.-J., Cao, J., (2014) J. Appl. Phys., 115, p. 113702
dc.relation.referencesZhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P., (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 2372-2377
dc.relation.referencesBravo, S., Correa, J., Chico, L., Pacheco, M., (2018) Sci. Rep., 8, p. 11070
dc.relation.referencesCorrea, J., Pacheco, M., Bravo, S., Chico, L., (2020) Carbon, 162, pp. 209-219
dc.relation.referencesZhao, T., Zhang, S., Guo, Y., Wang, Q., (2016) Nanoscale, 8, pp. 233-242
dc.relation.referencesZhuang, H.L., (2019) Comput. Mater. Sci., 159, pp. 448-453
dc.relation.referencesBravo, S., Correa, J., Chico, L., Pacheco, M., (2019) Sci. Rep., 9, p. 12754
dc.relation.referencesBravo, S., Pacheco, M., Nuñez, V., Correa, J.D., Chico, L., (2021) Nanoscale, 13, pp. 6117-6128
dc.relation.referencesAvramov, P., Demin, V., Luo, M., Choi, C.H., Sorokin, P.B., Yakobson, B., Chernozatonskii, L., (2015) J. Phys. Chem. Lett., 6, pp. 4525-4531
dc.relation.referencesKuklin, A.V., Ågren, H., Avramov, P.V., (2020) Phys. Chem. Chem. Phys., 22, pp. 8289-8295
dc.relation.referencesOyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., (2017) J. Am. Chem. Soc., 139, pp. 14090-14097
dc.relation.referencesZhang, X., Su, G., Lu, J., Yang, W., Zhuang, W., Han, K., Wang, X., Yang, P., (2021) ACS Appl. Mater. Interfaces, 13, pp. 43063-43074
dc.relation.referencesBykov, M., Bykova, E., Ponomareva, A.V., Tasnádi, F., Chariton, S., Prakapenka, V.B., Glazyrin, K., Goncharov, A.F., (2021) ACS Nano, 15, pp. 13539-13546
dc.relation.referencesOyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., Yu, P., Xiao, K., (2017) J. Am. Chem. Soc., 139, pp. 14090-14097
dc.relation.referencesNguyen, G.D., Oyedele, A.D., Haglund, A., Ko, W., Liang, L., Puretzky, A.A., Mandrus, D., Li, A.-P., (2020) ACS Nano, 14, pp. 1951-1957
dc.relation.referencesFu, M., Liang, L., Zou, Q., Nguyen, G.D., Xiao, K., Li, A.-P., Kang, J., Gai, Z., (2020) J. Phys. Chem. Lett., 11, pp. 740-746
dc.relation.referencesXie, C., Jiang, S., Gao, Y., Hong, M., Pan, S., Zhao, J., Zhang, Y., (2020) Small, 16, p. 2000754
dc.relation.referencesLu, L.-S., Chen, G.-H., Cheng, H.-Y., Chuu, C.-P., Lu, K.-C., Chen, C.-H., Lu, M.-Y., Chang, W.-H., (2020) ACS Nano, 14, pp. 4963-4972
dc.relation.referencesOyedele, A.D., Yang, S., Feng, T., Haglund, A.V., Gu, Y., Puretzky, A.A., Briggs, D., Xiao, K., (2019) J. Am. Chem. Soc., 141, pp. 8928-8936
dc.relation.referencesYu, J., Kuang, X., Gao, Y., Wang, Y., Chen, K., Ding, Z., Liu, J., Liu, Y., (2020) Nano Lett., 20, pp. 1172-1182
dc.relation.referencesYu, J., Kuang, X., Li, J., Zhong, J., Zeng, C., Cao, L., Liu, Z., Liu, Y., (2021) Nat. Commun., 12, p. 1083
dc.relation.referencesChen, X., Huang, J., Chen, C., Chen, M., Hu, G., Wang, H., Dong, N., Wang, J., (2022) Adv. Opt. Mater., 10, p. 2101963
dc.relation.referencesGudelli, V.K., Guo, G.-Y., (2021) New J. Phys., 23, p. 93028
dc.relation.referencesZhao, Y., Yu, P., Zhang, G., Sun, M., Chi, D., Hippalgaonkar, K., Thong, J.T.-L., Wu, J., (2020) Adv. Funct. Mater., 30, p. 2004896
dc.relation.referencesSun, J., Shi, H., Siegrist, T., Singh, D.J., (2015) Appl. Phys. Lett., 107, p. 153902
dc.relation.referencesKuklin, A.V., Ågren, H., (2019) Phys. Rev. B, 99, p. 245114
dc.relation.referencesKuklin, A.V., Begunovich, L.V., Gao, L., Zhang, H., Ågren, H., (2021) Phys. Rev. B, 104, p. 134109
dc.relation.referencesLei, W., Wang, W., Ming, X., Zhang, S., Tang, G., Zheng, X., Li, H., Autieri, C., (2020) Phys. Rev. B, 101, p. 205149
dc.relation.referencesFeng, L.-Y., Villaos, R.A.-B., Huang, Z.-Q., Hsu, C.-H., Chuang, F.-C., (2020) New J. Phys., 22, p. 53010
dc.relation.referencesGiannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., Baroni, S., (2020) J. Chem. Phys., 152, p. 154105
dc.relation.referencesMortensen, J.J., Hansen, L.B., Jacobsen, K.W., (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 71, p. 35109
dc.relation.referencesEnkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Jacobsen, K.W., (2010) J. Phys.: Condens. Matter, 22, p. 253202
dc.relation.referencesMostofi, A.A., Yates, J.R., Pizzi, G., Lee, Y.-S., Souza, I., Vanderbilt, D., Marzari, N., (2014) Comput. Phys. Commun., 185, pp. 2309-2310
dc.relation.referencesCoh, S., Vanderbilt, D., https://www.physics.rutgers.edu/pythtb/, and Python Tight Binding PythTB
dc.relation.referencesIbañez-Azpiroz, J., Tsirkin, S.S., Souza, I., (2018) Phys. Rev. B, 97, p. 245143
dc.relation.referencesQiao, J., Zhou, J., Yuan, Z., Zhao, W., (2018) Phys. Rev. B, 98, p. 214402
dc.relation.referencesZhuang, H.L., (2019) Comput. Mater. Sci., 159, pp. 448-453
dc.relation.referencesChristopher Bradley, A.P.-C., (2010) The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups, , Oxford University Press Oxford New York
dc.relation.referencesLei, W., Cai, B., Zhou, H., Heymann, G., Tang, X., Zhang, S., Ming, X., (2019) Nanoscale, 11, pp. 12317-12325
dc.relation.referencesAroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M., Wondratschek, H., (2006) Acta Crystallogr., Sect. A: Found. Crystallogr., 62, pp. 115-128
dc.relation.referencesKim, H.-g, Choi, H.J., (2021) Phys. Rev. B, 103, p. 165419
dc.relation.referencesDresselhaus, M.S., Dresselhaus, G., Jorio, A., (2008) Group Theory: Application to the Physics of Condensed Matter, , and Springer-Verlag Berlin Heidelberg
dc.relation.referencesCano, J., Bradlyn, B., Wang, Z., Elcoro, L., Vergniory, M.G., Felser, C., Aroyo, M.I., Bernevig, B.A., (2018) Phys. Rev. B, 97, p. 35139
dc.relation.referencesCano, J., Bradlyn, B., (2021) Annu. Rev. Condens. Matter Phys., 12, pp. 225-246
dc.relation.referencesKruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J., (2017) Phys. Rev. X, 7, p. 41069
dc.relation.referencesPo, H.C., Vishwanath, A., Watanabe, H., (2017) Nat. Commun., 8, p. 50
dc.relation.referencesElcoro, L., Song, Z., Bernevig, B.A., (2020) Phys. Rev. B, 102, p. 35110
dc.relation.referencesVanderbilt, D., (2018) Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators, , Cambridge University Press
dc.relation.referencesAlexandradinata, A., Dai, X., Bernevig, B.A., (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 89, p. 155114
dc.relation.referencesElcoro, L., Bradlyn, B., Wang, Z., Vergniory, M.G., Cano, J., Felser, C., Bernevig, B.A., Aroyo, M.I., (2017) J. Appl. Crystallogr., 50, pp. 1457-1477
dc.relation.referencesFu, L., Kane, C.L., (2007) Phys. Rev. B: Condens. Matter Mater. Phys., 76, p. 45302
dc.relation.referencesIraola, M., Mañes, J.L., Bradlyn, B., Neupert, T., Vergniory, M.G., Tsirkin, S.S., (2020) IrRep: symmetry eigenvalues and irreducible representations of ab initio band structures
dc.relation.referencesTaherinejad, M., Garrity, K.F., Vanderbilt, D., (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 89, p. 115102
dc.relation.referencesSoluyanov, A.A., Vanderbilt, D., (2011) Phys. Rev. B: Condens. Matter Mater. Phys., 83, p. 35108
dc.relation.referencesWang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., (2012) Nat. Nanothecnol., 7, pp. 699-712
dc.relation.referencesBisri, S.Z., Shimizu, S., Nakano, M., Iwasa, Y., (2017) Adv. Mater., 29, p. 1607054
dc.relation.referencesGutiérrez-Lezama, I., Ubrig, N., Ponomarev, E., Morpurgo, A.F., (2021) Nat. Rev. Phys., 3, pp. 508-519
dc.relation.referencesGuo, G.Y., Murakami, S., Chen, T.-W., Nagaosa, N., (2008) Phys. Rev. Lett., 100, p. 96401
dc.relation.referencesMatthes, L., Küfner, S., Furthmüller, J., Bechstedt, F., (2016) Phys. Rev. B, 94, p. 85410
dc.relation.referencesSławińska, J., Cerasoli, F.T., Wang, H., Postorino, S., Supka, A., Curtarolo, S., Fornari, M., Nardelli, M.B., (2019) 2D Mater., 6, p. 25012
dc.relation.referencesGuo, G.Y., Yao, Y., Niu, Q., (2005) Phys. Rev. Lett., 94, p. 226601
dc.relation.referencesYao, Y., Fang, Z., (2005) Phys. Rev. Lett., 95, p. 156601
dc.relation.referencesNardelli, M.B., Cerasoli, F.T., Costa, M., Curtarolo, S., De Gennaro, R., Fornari, M., Liyanage, L., Wang, H., (2018) Comput. Mater. Sci., 143, pp. 462-472
dc.relation.referencesHaastrup, S., Strange, M., Pandey, M., Deilmann, T., Schmidt, P.S., Hinsche, N.F., Gjerding, M.N., Thygesen, K.S., (2018) 2D Mater., 5, p. 42002
dc.relation.referencesChoudhary, K., Kalish, I., Beams, R., Tavazza, F., (2017) Sci. Rep., 7, p. 5179
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record