dc.contributor.author | Al-Zyoud I | |
dc.contributor.author | Laamarti F | |
dc.contributor.author | Ma X | |
dc.contributor.author | Tobón D | |
dc.contributor.author | El Saddik A. | |
dc.date.accessioned | 2023-10-24T19:26:27Z | |
dc.date.available | 2023-10-24T19:26:27Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 14248220 | |
dc.identifier.uri | http://hdl.handle.net/11407/8148 | |
dc.description.abstract | Human bio-signal fusion is considered a critical technological solution that needs to be advanced to enable modern and secure digital health and well-being applications in the metaverse. To support such efforts, we propose a new data-driven digital twin (DT) system to fuse three human physiological bio-signals: heart rate (HR), breathing rate (BR), and blood oxygen saturation level (SpO2). To accomplish this goal, we design a computer vision technology based on the non-invasive photoplethysmography (PPG) technique to extract raw time-series bio-signal data from facial video frames. Then, we implement machine learning (ML) technology to model and measure the bio-signals. We accurately demonstrate the digital twin capability in the modelling and measuring of three human bio-signals, HR, BR, and SpO2, and achieve strong performance compared to the ground-truth values. This research sets the foundation and the path forward for realizing a holistic human health and well-being DT model for real-world medical applications. © 2022 by the authors. | eng |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144515996&doi=10.3390%2fs22249747&partnerID=40&md5=a32f31f7fef23eb8eeced6de1bda44f2 | |
dc.source | Sensors | |
dc.source | Sensors | eng |
dc.subject | Bio-signal fusion | eng |
dc.subject | Computer vision | eng |
dc.subject | Digital health | eng |
dc.subject | Digital twin | eng |
dc.subject | Machine learning | eng |
dc.subject | Metaverse | eng |
dc.title | Towards a Machine Learning-Based Digital Twin for Non-Invasive Human Bio-Signal Fusion | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Telecomunicaciones | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/s22249747 | |
dc.relation.citationvolume | 22 | |
dc.relation.citationissue | 24 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Al-Zyoud, I., Multimedia Communications Research Laboratory (MCRLab), School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada | |
dc.affiliation | Laamarti, F., Multimedia Communications Research Laboratory (MCRLab), School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada, Mohamed bin Zayed University of AI, Abu Dhabi, United Arab Emirates | |
dc.affiliation | Ma, X., Multimedia Communications Research Laboratory (MCRLab), School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada | |
dc.affiliation | Tobón, D., Faculty of Engineering, University of Medellín, Medellín, 050010, Colombia | |
dc.affiliation | El Saddik, A., Multimedia Communications Research Laboratory (MCRLab), School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada, Mohamed bin Zayed University of AI, Abu Dhabi, United Arab Emirates | |
dc.relation.references | El Saddik, A., Laamarti, F., Alja’Afreh, M., The Potential of Digital Twins (2021) IEEE Instrum. Meas. Mag, 24, pp. 36-41 | |
dc.relation.references | Gámez Díaz, R., Yu, Q., Ding, Y., Laamarti, F., El Saddik, A., Digital Twin Coaching for Physical Activities: A Survey (2020) Sensors, 20. , 33096595 | |
dc.relation.references | Sahal, R., Alsamhi, S.H., Brown, K.N., Personal Digital Twin: A Close Look into the Present and a Step towards the Future of Personalised Healthcare Industry (2022) Sensors, 22. , 35957477 | |
dc.relation.references | Costantini, A., Di Modica, G., Ahouangonou, J.C., Duma, D.C., Martelli, B., Galletti, M., Antonacci, M., Delamarre, C., IoTwins: Toward Implementation of Distributed Digital Twins in Industry 4.0 Settings (2022) Computers, 11 | |
dc.relation.references | Segovia, M., Garcia-Alfaro, J., Design, Modeling and Implementation of Digital Twins (2022) Sensors, 22. , 35891076 | |
dc.relation.references | da Silva Mendonça, R., de Oliveira Lins, S., de Bessa, I.V., de Carvalho Ayres, F.A., Jr., de Medeiros, R.L.P., de Lucena, V.F., Jr., Digital Twin Applications: A Survey of Recent Advances and Challenges (2022) Processes, 10 | |
dc.relation.references | El Saddik, A., Digital twins: The convergence of multimedia technologies (2018) IEEE Multimed, 25, pp. 87-92 | |
dc.relation.references | Laamarti, F., Badawi, H.F., Ding, Y., Arafsha, F., Hafidh, B., Saddik, A.E., An ISO/IEEE 11073 Standardized Digital Twin Framework for Health and Well-Being in Smart Cities (2020) IEEE Access, 8, pp. 105950-105961 | |
dc.relation.references | Muhammad, G., Alshehri, F., Karray, F., Saddik, A.E., Alsulaiman, M., Falk, T.H., A comprehensive survey on multimodal medical signals fusion for smart healthcare systems (2021) Inf. Fusion, 76, pp. 355-375 | |
dc.relation.references | Cheng, C.H., Wong, K.L., Chin, J.W., Chan, T.T., So, R.H.Y., Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda (2021) Sensors, 21. , 34577503 | |
dc.relation.references | Ma, X., Tobón, D.P., El Saddik, A., Remote Photoplethysmography (rPPG) for Contactless Heart Rate Monitoring Using a Single Monochrome and Color Camera (2020) Proceedings of the Smart Multimedia, pp. 248-262. , McDaniel T., Berretti S., Curcio I.D.D., Basu A., (eds), San Diego, CA, USA, 16–18 December 2019, Springer International Publishing, Cham, Switzerland | |
dc.relation.references | Niu, X., Han, H., Shan, S., Chen, X., VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video (2018) Proceedings of the Asian Conference on Computer Vision, pp. 562-576. , Perth, Australia, 2–6 December 2018, Springer, Berlin/Heidelberg, Germany | |
dc.relation.references | Wang, H., Zhou, Y., Saddik, A.E., VitaSi: A real-time contactless vital signs estimation system (2021) Comput. Electr. Eng, 95, p. 107392 | |
dc.relation.references | Atienza, R., (2020) Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, Deep RL, Unsupervised Learning, Object Detection and Segmentation, and More, , Packt Publishing Ltd., Birmingham, UK | |
dc.relation.references | Ioffe, S., Szegedy, C., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37, pp. 448-456. , Lille, France, 6–11 July 2015 | |
dc.relation.references | Goodfellow, I., Bengio, Y., Courville, A., (2016) Deep Learning (Adaptive Computation And Machine Learning Series), , MIT Press, Cambridge, MA, USA | |
dc.relation.references | Kingma, D.P., Ba, J., Adam: A method for stochastic optimization (2014) arXiv, , 1412.6980 | |
dc.relation.references | Hochreiter, S., Schmidhuber, J., Long short-term memory (1997) Neural Comput, 9, pp. 1735-1780. , 9377276 | |
dc.relation.references | Chen, T., Guestrin, C., Xgboost: A scalable tree boosting system Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785-794. , San Francisco, CA, USA, 13–17 August 2016 | |
dc.relation.references | Chen, D.Y., Wang, J.J., Lin, K.Y., Chang, H.H., Wu, H.K., Chen, Y.S., Lee, S.Y., Image sensor-based heart rate evaluation from face reflectance using Hilbert–Huang transform (2014) IEEE Sens. J, 15, pp. 618-627 | |
dc.relation.references | Wang, C., Pun, T., Chanel, G., A comparative survey of methods for remote heart rate detection from frontal face videos (2018) Front. Bioeng. Biotechnol, 6, p. 33. , 29765940 | |
dc.relation.references | Lévesque, L., Nyquist sampling theorem: Understanding the illusion of a spinning wheel captured with a video camera (2014) Phys. Educ, 49, p. 697 | |
dc.relation.references | https://www.hopkinsmedicine.org/health/conditions-and-diseases/vital-signs-body-temperature-pulse-rate-respiration-rate-blood-pressure, Available online | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |