Mostrar el registro sencillo del ítem

Efectos del campo magnético sobre la densidad de carga y la densidad de corriente en una monocapa de grafeno finita

dc.contributor.authorPáez González, Carlos José
dc.contributor.authorQuintero Orozco, Jorge Hernán
dc.contributor.authorGarcía Castro, Andrés Camilo
dc.date.accessioned2023-11-28T16:26:08Z
dc.date.available2023-11-28T16:26:08Z
dc.date.created2021-06-16
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8198
dc.descriptionIn this work, we study the effects of an external magnetic field on the charge and current density in finite monolayer graphene, i.e., with zig-zag and armchair edges. We use the tight-binding model to include the effects of the magnetic field and the effect of the edges. By using the transmisión probability and analyzing the local density of states (charge density) obtained from Green’s function method, we find an energy region where the wave functions are more localized in the edges and, consequently, the current flow across the borders. On the other hand, for energies close to Landau levels, the charge and current density are localized on the bulk of the system.eng
dc.descriptionEn este trabajo, estudiamos los efectos de un campo magnético externo sobre la densidad de carga y la densidad de corriente de una monocapa de grafeno finita, es decir, con bordes zig-zag y armchair. Usamos el modelo tight-binding para incluir los efectos del campo magnético y el efecto de los bordes. Utilizando la probabilidad de transmisión y analizando la densidad local de estados (densidad de carga), obtenidas por el método recursivo de las funciones de Green, encontramos que hay regiones de energía donde las funciones de onda están más localizadas en los bordes y, en consecuencia, la corriente fluye a través de estos. Por otro lado, para energías cercanas a los niveles de Landau, la carga y la corriente se localizan en mayor parte en el centro del sistema.spa
dc.formatPDF
dc.format.extentp. 251-261
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3034
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 251-261
dc.subjectGrapheneeng
dc.subjectMagnetic fieldeng
dc.subjectLocalizationeng
dc.subjectElectronic transporteng
dc.subject2D materialseng
dc.subjectGreen´s function methodseng
dc.subjectCharge densityeng
dc.subjectNano-electronics deviceseng
dc.subjectTight-binding modeleng
dc.subjectGrafenospa
dc.subjectCampo magnéticospa
dc.subjectLocalizaciónspa
dc.subjectTransporte electrónicospa
dc.subjectMateriales en 2Dspa
dc.subjectMétodo de la función de Greenspa
dc.subjectDensidad de cargaspa
dc.subjectDispositivos de nanoelectrónicosspa
dc.subjectModelo tight-bindingspa
dc.titleMagnetic Field Effects on Charge and Current Density in Finite Monolayer Grapheneeng
dc.titleEfectos del campo magnético sobre la densidad de carga y la densidad de corriente en una monocapa de grafeno finitaspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n39a14
dc.relation.citationvolume20
dc.relation.citationissue39
dc.relation.citationstartpage251
dc.relation.citationendpage261
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesE. R. Mucciolo and C. H. Lewenkopf, “Disorder and electronic transport in graphene,” Journal of Physics: Condensed Matter, vol. 22, no. 27, p. 273201, 2010. Doi: 10.1088/0953-8984/22/27/273201.
dc.relation.referencesI. Choudhuri, P. Bhauriyal, and B. Pathak, “Recent Advances in Graphene-Like 2D Materials for Spintronics Applications”, Chemistry of Materials, vol. 31, no. 20, p. 8260, 2019. Doi: 10.1021/acs.chemmater.9b02243.
dc.relation.referencesA. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, pp. 109–162, Jan 2009. Doi: 10.1103/RevModPhys.81.109.
dc.relation.referencesA. K. Geim. . K. Novoselov, “The rise of graphene”, Nature Materials. vol 6, p. 183, 2007. Doi: 10.1038/nmat1849.
dc.relation.referencesK. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” physica status solidi (b), vol. 244, no. 11, pp. 4106, 2007. Doi: 10.1002/pssb.200776208.
dc.relation.referencesG. Han, Z. Ma, B Zhou, C. He, B. Wang, Y. Feng, and C.Liu, “Cellulose-based Ni-decorated Graphene Magnetic Film for Electromagnetic Interference Shielding”. Journal of Colloid and Interface Science. vol. 583, p. 571, 2021. Doi: 10.1016/j.jcis.2020.09.072.
dc.relation.referencesK. Novoselov, A. Geim, S. Morozov, et al. “Two-dimensional gas of massless Dirac fermions in graphene”. Nature, vol 438, p.197, 2005.Doi: 10.1038/nature04233.
dc.relation.referencesM. Y. Han, J. C. Brant, and P. Kim, “Electron transport in disordered graphene nanoribbons,”Phys. Rev. Lett., vol. 104, p. 056801, 2010. Doi: 10.1103/PhysRevLett.104.056801.
dc.relation.referencesX. Xi, J. Ma, S. Wan, CH. Dong and X. Sun, “Observation of chiral edge states in gapped nanomechanical graphene”, Science Advances, vol 7, no 2, p. 1, 2021. Doi: 10.1126/sciadv.abe1398.
dc.relation.referencesK. S. Kim, T.-H. Kim, A. L. Walter, T. Seyller, H. W.Yeom, .E. Rotenberg, and A.Bostwick, “Visualizing Atomic-Scale Negative Differential Resistance in bilayer Graphene”. Physical Review Letters, Vol. 110, no. 3, P. 036804, 2013. Doi: 10.1103/PhysRevLett.110.036804.
dc.relation.referencesS. Rotter, J.Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, “Modular recursive Green’s function method for ballistic quantum transport, Physical. Review. B, vol 62, p.1950, 2000. Doi:10.1103/PhysRevB.62.1950.
dc.relation.referencesS Nonoyama, A Oguri, “Direct calculation of the nonequilibrium current by a recursive method, Physical. Review. B, vol 57, p. 8797, 1998. Doi: 10.1103/PhysRevB.57.8797.
dc.relation.referencesG. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and E. Y. Andrei, “Evolution of landau levels into edge states in graphene,” Nature Communications, vol. 4, pp. 1744, 2013. Doi: 10.1038/ncomms2767.
dc.relation.referencesG. A. Nemnes, “Nano-transistors in the Landauer–Büttiker formalism”, Journal of Applied Physics, vol 96, p.596, 2004. Doi: 10.1063/1.1748858.
dc.relation.referencesA. R. Hernández and C. H. Lewenkopf, “Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green’s functions versus scattering approach”, The European Physical Journal B vol. 86, p.131, 2013. Doi: 10.1140/epjb/e2013-31089-1
dc.relation.referencesM. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, “Highly convergent schemes for the calculation of bulk and surface green functions,” Journal of Physics F: Metal Physics, vol. 15, no. 4, p. 851, 1985. Doi: 10.1103/PhysRevB.81.245411
dc.relation.referencesA. Cresti, R. Farchioni, G. Grosso, and G.P.Parravicini, “Keldysh-Green function formalism for current profiles in mesoscopic systems”. Physical Review B, vol. 68 no. 7, p. 075306, 2003. doi: 10.1103/physrevb.68.075306
dc.relation.referencesL. Brey,and H. A. Fertig, “Electronic states of graphene nanoribbons studied with the Dirac equation”. Physical Review B, vol. 73, p. 23, 2006. Doi: 10.1103/physrevb.73.235411
dc.relation.referencesM. Wimmer, A. R. Akhmerov, and F. Guinea, “Robustness of edge states in graphene quantum dots,” Physical. Review. B, vol. 82, p. 045409, 2010. Doi: 10.1103/PhysRevB.82.045409
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International