Show simple item record

dc.contributor.authorBareño-Silva J
dc.contributor.authorBedoya-Calle Á.H
dc.contributor.authorGómez-Urrea H.A
dc.contributor.authorCaro-Lopera F.J.
dc.date.accessioned2024-07-31T21:06:50Z
dc.date.available2024-07-31T21:06:50Z
dc.date.created2024
dc.identifier.issn24058440
dc.identifier.urihttp://hdl.handle.net/11407/8404
dc.descriptionIn this study, we address three key challenges in photonic crystals: modeling of isolated flat bands, electric field prediction, and band separation in dispersion relations. Using twisted square Bravais lattices at specific angles, we create Bravais-Moiré photonic crystals exhibiting unique characteristics. These include band pairing and parallelism in certain Brillouin zones, enabling predictable electric field behavior and identification of isolated, flat band pairs within extensive band gaps. We apply advanced Shape theory-based classification methods for precise band separation, offering significant contributions to photonics research and light manipulation applications. © 2024 The Author(s)
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85189097631&doi=10.1016%2fj.heliyon.2024.e28275&partnerID=40&md5=61d5212bf32d21218bdaf3024da7bae4
dc.sourceHeliyon
dc.sourceHeliyon
dc.sourceScopus
dc.subjectBravais-Moiréeng
dc.subjectElectric fieldeng
dc.subjectFlat bandseng
dc.subjectMachine learningeng
dc.subjectPhotonic crystaleng
dc.subjectRiemannian distanceeng
dc.titleBand separation and electric field prediction in square Bravais-Moiré photonic crystalseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1016/j.heliyon.2024.e28275
dc.relation.citationvolume10
dc.relation.citationissue7
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationBareño-Silva, J., Doctorate in Modeling and Scientific Computing, Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Antioquia, Medellin, 050026, Colombia
dc.affiliationBedoya-Calle, Á.H., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Antioquia, Medellin, 050026, Colombia
dc.affiliationGómez-Urrea, H.A., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Antioquia, Medellin, 050026, Colombia
dc.affiliationCaro-Lopera, F.J., Faculty of Basic Sciences, University of Medellin, Cra. 87 # 30-65, Antioquia, Medellin, 050026, Colombia
dc.relation.referencesFigotin, A., Godin, Y.A., Vitebsky, I., Two-dimensional tunable photonic crystals (1998) Phys. Rev. B, 57 (5), pp. 2841-2848
dc.relation.referencesKee, C.-S., Lim, H., Tunable complete photonic band gaps of two-dimensional photonic crystals with intrinsic semiconductor rods (2001) Phys. Rev. B, 64, pp. 103-121
dc.relation.referencesYablonovitch, E., Inhibited spontaneous emission in solid-state physics and electronics (1987) Phys. Rev. Lett., 58 (20), pp. 2059-2062
dc.relation.referencesJohn, S., Strong localization of photons in certain disordered dielectric superlattices (1987) Phys. Rev. Lett., 58 (23), pp. 2486-2489
dc.relation.referencesWu, L., Zhuang, F., He, S., Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps (2003) Phys. Rev. E, 67 (2)
dc.relation.referencesJorgensen, J.J., Christensen, J.E., Jarvis, T.J., Hart, G.L., A simple, general algorithm for calculating the irreducible Brillouin zone (2021), arXiv preprint
dc.relation.referencesEl-Naggar, S.A., Elsayed, H.A., Aly, A.H., Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals (2014) J. Supercond. Nov. Magn., 27 (7), pp. 1615-1621
dc.relation.referencesGeraldine, G., Priou, A., An introduction to photonic band gap (PBG) materials (2003) Prog. Electromagn. Res., 41, pp. 1-20
dc.relation.referencesKariyado, T., Vishwanath, A., Flat band in twisted bilayer Bravais lattices (2019) Phys. Rev. Res., 1 (3)
dc.relation.referencesUmenyi, A., Miura, K., Hanaizumi, O., Modified finite-difference time-domain method for triangular lattice photonic crystals (2009) J. Lightwave Technol., 27, p. 22
dc.relation.referencesCao, Y., Fatemi, V., Fang, S., Unconventional superconductivity in magic-angle graphene superlattices (2018) Nature, 556, pp. 43-50
dc.relation.referencesShallcross, S., Sharma, S., Kandelaki, E., Pankratov, O.A., Electronic structure of turbostratic graphene (2010) Phys. Rev. B, Condens. Matter Mater. Phys., 81 (16)
dc.relation.referencesShallcross, S., Sharma, S., Pankratov, O.A., Document quantum interference at the twist boundary in graphene (2008) Phys. Rev. Lett., 101 (5)
dc.relation.referencesShallcross, S., Sharma, S., Pankratov, O.A., Erratum: electronic structure of turbostratic graphene (2010) Phys. Rev. B, Condens. Matter Mater. Phys., 81
dc.relation.referencesToshikaze, K., Vishwanath, A., Flat band in twisted bilayer Bravais lattices (2019) Phys. Rev. Res., 1 (3). , American Physical Society (APS)
dc.relation.referencesCaro-Lopera, F.J., Bravais-Moiré theory (2013), Technical report University of Medellin
dc.relation.referencesGómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramosa, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun., 459 (15)
dc.relation.referencesGómez-Urrea, H.A., Bareño-Silva, J., Caro-Lopera, F.J., Mora-Ramos, M.E., The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices (2020) Photonics Nanostruct. Fundam. Appl., 42
dc.relation.referencesTiutiunnyk, A., Duque, C.A., Caro-Lopera, F.J., Mora-Ramos, M.E., Correa, J.D., Opto-electronic properties of twisted bilayer graphene quantum dots (2019) Physica E, Low-Dimens. Syst. Nanostruct., 112, pp. 36-48
dc.relation.referencesLeon, A.M., Velasquez, E.A., Caro-Lopera, F., Mejia-Lopez, J., Tuning magnetic order in CrI3 bilayers via Moiré patterns (2022) Adv. Theory Simul., 5 (4)
dc.relation.referencesMyoung, N., Park, H.C., Ramachandran, A., Lidorikis, E., Ryu, J.-W., Flat-band localization and self-collimation of light in photonic crystals (2019) Sci. Rep., 9 (1)
dc.relation.referencesJoannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D., Photonic Crystals: Molding the Flow of Light (2008), Princeton University Press
dc.relation.referencesGoodall, C.R., Mardia, K.V., Multivariate aspects of shape theory (1993) Ann. Stat., 21, pp. 848-866
dc.relation.referencesDryden, I., Mardia, K.V., Statistical Shape Analysis (1998), Wiley
dc.relation.referencesCaro-Lopera, F.J., Díaz-García, J.A., González-Farías, G., Noncentral elliptical configuration density (2010) J. Multivar. Anal., 101, pp. 32-43
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Estimation of mean form and mean form difference under elliptical laws (2017) Electron. J. Stat., 11 (1), pp. 2424-2460
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Elliptical affine shape distributions for real normed division algebras (2016) J. Multivar. Anal., 144, pp. 139-149
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Generalised shape theory via pseudo-Wishart distribution (2013) Sankhya A, 75 (PART2), pp. 253-276
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Statistical theory of shape under elliptical models via QR decomposition (2014) Statistics, 48 (2), pp. 456-472
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Generalised shape theory via SV decomposition I (2012) Metrika, 75 (4), pp. 541-565
dc.relation.referencesDíaz-García, J.A., Caro-Lopera, F.J., Statistical theory of shape under elliptical models and singular value decompositions (2012) J. Multivar. Anal., 103 (1), pp. 77-92
dc.relation.referencesCOMSOL Multiphysics, Introduction to COMSOL Multiphysics®, COMSOL Multiphysics, Burlington, MA (Accessed Feb 2023)
dc.relation.references(2023), F.J. Caro Lopera (Productor), Á.H. Bedoya Calle (Autor), J. Bareño Silva (Autor), H.A. Gómez Urrea (Autor), Software Bravais-Moiré, Software
dc.relation.referencesR: A Language and Environment for Statistical Computing (2021), https://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria
dc.relation.referencesArias, E., Caro-Lopera, F.J., Flórez, E., Pérez-Torres, J.F., Two novel approaches based on the Thompson theory and shape analysis for determination of equilibrium structures of nanoclusters: Cu8, Ag8 and Ag18 as study cases (2019) J. Phys. Conf. Ser., 1247. , conference 1
dc.relation.referencesCaro-Lopera, F.J., Díaz-García, J.A., González-Farías, G., Inference in affine shape models under elliptical models (2014) J. Korean Stat. Soc., 43 (1), pp. 67-77
dc.relation.referencesCaro-Lopera, F.J., A family of formulae for pi (2012) Far East J. Math. Sci., 64 (2), pp. 157-181
dc.relation.referencesOspina, M., Modelos matemáticos para la descripción de patrones de Moiré en redes de Bravais (2017), M.Sc. Thesis. Advisors F. Caro-Lopera and J. Correa-Abad Faculty of Basic Sciences, University of Medellin
dc.relation.referencesQuintero, J.H., Mariño, A., Siller, L., Restrepo-Parra, E., Caro-Lopera, F.J., Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition (2017) Surf. Coat. Technol., 309, pp. 249-257
dc.relation.referencesQuiroz, J., UdeMedellin Photonics Software (2020), B.Sc. Thesis. Advisors A. Gómez-Urrea and Caro-Lopera Faculty of Basic Sciences, University of Medellin
dc.relation.referencesValencia, G.M., Anaya, J.A., Velásquez, E.A., Ramo, R., Caro-Lopera, F.J., About validation-comparison of burned area products (2020) Remote Sens., 12 (23), p. 3972
dc.relation.referencesVillarreal-Ríos, A.L., Bedoya-Calle, A.H., Caro-Lopera, F.J., Ortiz-Méndez, U., García-Méndez, M., Pérez-Ramírez, F.O., Ultrathin tunable conducting oxide films for near-IR applications: an introduction to spectroscopy shape theory (2019) SN Appl. Sci., 1
dc.relation.referencesJones, M.R., Cheng, Z., Xing, Y., (2023), Assembly of Planar Chiral Superlattices from Achiral Building Blocks, United States Patent Application US20230249966, William Marsh Rice University, Pre-Granted Publication, Feb
dc.relation.referencesWang, P., Fu, Q., Peng, R., Kartashov, Y.V., Torner, L., Konotop, V.V., Ye, F., Two-dimensional Thouless pumping of light in photonic Moiré lattices (2022) Nat. Commun., 13 (1). , [Online]
dc.relation.referencesSui, J., Dong, R., Liao, S., Zhao, Z., Wang, Y., Zhang, H.-F., Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection (2023) Ann. Phys., 535 (3). , [Online]
dc.relation.referencesSui, J., Liao, S., Dong, R., Zhang, H.-F., A Janus logic gate with sensing function (2023) Ann. Phys., 535 (4). , [Online]
dc.relation.referencesGuo, S., Hu, C., Zhang, H., Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence (2020) J. Opt. Soc. Am. B, 37 (9), p. 2678. , [Online]
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record