Show simple item record

dc.contributor.authorGonzález-Reyes R
dc.contributor.authorCorrea J.D
dc.contributor.authorNava-Maldonado F.M
dc.contributor.authorRodríguez-Magdaleno K.A
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorMartínez-Orozco J.C.
dc.date.accessioned2024-07-31T21:06:50Z
dc.date.available2024-07-31T21:06:50Z
dc.date.created2024
dc.identifier.issn9214526
dc.identifier.urihttp://hdl.handle.net/11407/8406
dc.descriptionIn this study, we use density functional theory to calculate the optical and electronic properties of a black-phosphorene/MoS2 stack. We have considered different exchange–correlation functionals to account for the effects of van der Waals interaction and examined the impact of stacking order/layers alignment on the opto-electronic properties. Our findings reveal that the heterostructure exhibits a reduction in band gap and a modification of optical properties compared to single monolayers. The optical response was evaluated using an independent particle approximation to get the dielectric function's imaginary part, which showed a strong absorption peak in the visible and ultraviolet regions. This feature could be helpful for optoelectronic applications. Nonetheless, the stacking order has a negligible effect on the electronic and optical properties of the BP/MoS2 bilayer. © 2023 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85177025324&doi=10.1016%2fj.physb.2023.415489&partnerID=40&md5=5ae20c7cb3c0cca9df9285a8f0576ff5
dc.sourcePhysica B: Condensed Matter
dc.sourcePhys B Condens Matter
dc.sourceScopus
dc.subject2D-materialseng
dc.subjectDFTeng
dc.subjectMoS2eng
dc.subjectPhosphoreneeng
dc.subjectStackingeng
dc.subjectvdWeng
dc.subjectDensity functional theoryeng
dc.subjectElectronic propertieseng
dc.subjectEnergy gapeng
dc.subjectLayered semiconductorseng
dc.subjectMonolayerseng
dc.subjectOptical propertieseng
dc.subjectSulfur compoundseng
dc.subjectVan der Waals forceseng
dc.subject2d-materialeng
dc.subjectDensity-functional-theoryeng
dc.subjectDFTeng
dc.subjectElectronic and optical propertieseng
dc.subjectOptical and electronic propertieseng
dc.subjectPhosphoreneeng
dc.subjectStacking ordereng
dc.subjectStackingseng
dc.subjectVan der Waaleng
dc.subjectVdweng
dc.subjectMolybdenum compoundseng
dc.titleBlack Phosphorene/MoS2 van der Waals heterostructure: Electronic and optical propertieseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1016/j.physb.2023.415489
dc.relation.citationvolume673
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGonzález-Reyes, R., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, Zac., Zacatecas, C.P. 98060, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationNava-Maldonado, F.M., Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Universitario UAZ Siglo XXI Carretera Zacatecas-Guadalajara Km. 6, Ejido La Escondida, Zac., Zacatecas, C.P.98160, Mexico
dc.affiliationRodríguez-Magdaleno, K.A., Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Universitario UAZ Siglo XXI Carretera Zacatecas-Guadalajara Km. 6, Ejido La Escondida, Zac., Zacatecas, C.P.98160, Mexico
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Cuernavaca, Morelos, C.P. 62209, Mexico
dc.affiliationMartínez-Orozco, J.C., Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo La Bufa S/N, Zac., Zacatecas, C.P. 98060, Mexico
dc.relation.referencesKhandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I., Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications (2017) J. Mater. Sci. eng. B, 221, p. 17
dc.relation.referencesOughaddou, H., Enriquez, H., Tchalala, M.R., Yildirim, H., Mayne, A.J., Bendounan, A., Dujardin, G., Kara, A., Silicene, a promising new 2D material (2015) Prog. Surf. Sci., 90, p. 46
dc.relation.referencesManzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O., Kis, A., 2D transition metal dichalcogenides (2017) Nat. Rev. Mater., 5, p. 17033
dc.relation.referencesWang, J., Li, G., Li, L., Synthesis strategies about 2D materials (2016) Two-Dimensional Materials, , Nayak Pramoda Kumar IntechOpen
dc.relation.referencesWei, L., Jun-fang, C., Qinyu, H., Teng, W., Electronic and elastic properties of MoS2 (2010) Phys. B: Condens. Matter, 405, p. 2498
dc.relation.referencesRidolfi, E., Le, D., Rahman, T.S., Mucciolo, E.R., Lewenkopf, C.H., A tight-binding model for MoS2 monolayers (2015) J. Condens. Matter Phys., 27
dc.relation.referencesde Arellano, J.M.R., Jiménez-González, A.F., Canales, M., Magaña, L.F., Effect of Pt decoration on the optical properties of pristine and defective MoS2: An ab-initio study (2022) Int. J. Mol. Sci., 23, p. 11199
dc.relation.referencesLi, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Zhang, Y., Black phosphorus field-effect transistors (2014) Nature Nanotechnol., 9, p. 372
dc.relation.referencesKou, L., Chen, C., Smith, S.C., Phosphorene: Fabrication, properties and applications (2015) J. Phys. Chem. Lett., 6, p. 2794
dc.relation.referencesMu, X., Wang, J., Sun, M., Two-dimensional black phosphorus: Physical properties and applications (2019) Mater. Today Phys., 8, p. 92
dc.relation.referencesGoulart, L., da S. Fernandes, L., Lange dos Santos, C., Rossato, J., Electronic and structural properties of black phosphorene doped with Si, B and N (2019) Phys. Lett. A, 383
dc.relation.referencesGeim, A.K., Grigorieva, I.V., Van der Waals heterostructures (2013) Nature, 499, p. 419
dc.relation.referencesZhang, T., Fu, L., Controllable chemical vapor deposition growth of two-dimensional heterostructures (2018) Chem, 4, p. 671
dc.relation.referencesLi, M.-Y., Chen, C.-H., Shi, Y., Li, L.-J., Heterostructures based on two-dimensional layered materials and their potential applications (2016) Mater. Today, 19, p. 322
dc.relation.referencesDeng, Y., Luo, Z., Conrad, N., Liu, H., Gong, Y., Najmaei, S., Ajayan, P., Ye, P., Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode (2014) ACS Nano, 8, p. 8292
dc.relation.referencesKochar, R., Choudhary, S., MoS2/Phosphorene heterostructure for optical absorption in visible region (2018) IEEE J. Quantum Elect., 54, p. 1
dc.relation.referencesHuang, L., Huo, N., Li, Y., Chen, H., Yang, J., Wei, Z., Li, J., Li, S.-S., Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p-n heterostructure (2015) J. Phys. Chem. Lett., 6, p. 2483
dc.relation.referencesYang, F., Han, J., Zhang, L., Tang, X., Zhuo, Z., Zhenguo, Tao, Y., Dai, Y., Adjustable electronic and optical properties of BlueP/MoS2 van der Waals heterostructure by external strain: A first-principles study (2020) Nanotechnology, 31
dc.relation.referencesZhou, Y., Zhu, G., An, P., Du, S., First-principles investigations on MXene-Blue phosphorene and MXene-MoS2 transistors (2020) Nanotechnology, 31
dc.relation.referencesPal, S., Pal, N., Prajapati, Y.K., Saini, J.P., Sensitivity analysis of surface plasmon resonance biosensor based on heterostructure of 2D BlueP/MoS2 and mxene (2020) Layered 2D Advanced Materials and their Allied Applications, p. 103. , John Wiley & Sons, Ltd
dc.relation.referencesManiyar, A., Choudhary, S., Visible region absorption in TMDs/phosphorene heterostructures for use in solar energy conversion applications (2020) RSC Adv., 10, p. 31730
dc.relation.referencesKaur, S., Kumar, A., Srivastava, S., Tankeshwar, K., van der Waals heterostructures based on allotropes of phosphorene and MoSe2 (2017) Phys. Chem. Chem. Phys., 19, p. 22023
dc.relation.referencesQiu, B., Zhao, X., Hu, G., Yue, W., Ren, J., Xiaobo Yuan, X., Optical properties of Graphene/MoS2 heterostructure: First principles calculations (2018) Nanomaterials, 8
dc.relation.referencesDai, J., Cheng, Z., Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells (2014) J. Phys. Chem. Lett., 5, p. 1289
dc.relation.referencesLiao, C., Zhao, Y., Ouyang, G., Strain-modulated band engineering in two-dimensional black phosphorus/MoS2 van der Waals heterojunction (2018) ACS Omega, 3, p. 14641
dc.relation.referencesHuang, L., Li, Y., Wei, Z., Li, J., Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure (2015) Sci. Rep., 5, p. 16448
dc.relation.referencesZhang, Z., Ouyang, G., Band modulation of black phosphorus and molybdenum disulfide van der Waals heterojunction: Twist and electric field effects (2018) ACS Appl. Energy Mater., 1, p. 5675
dc.relation.referencesÇakır, D., Sevik, C., Peeters, F.M., Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus (2015) Phys. Rev. B, 92
dc.relation.referencesZhang, J., Lang, X.Y., Jiang, Q., Electronic and optical properties of bilayer SnS with different stacking orders: A first principles study (2018) J. Appl. Phys., 124
dc.relation.referencesFerdous, N., Islam, M.S., Park, J., Hashimoto, A., Tunable electronic properties in stanene and two dimensional silicon-carbide heterobilayer: A first principles investigation (2019) AIP Adv., 9, p. 25120
dc.relation.referencesQin, H., Sorkin, V., Pei, Q.-X., Liu, Y., Zhang, Y.-W., Failure in 2D materials: Defect sensitivity and failure criteria (2019) J. Appl. Mech., 87, p. 1
dc.relation.referencesSun, X., Zhang, X., Xie, Y., Surface defects in two-dimensional photocatalysts for efficient organic synthesis (2020) Matter, 2, p. 842
dc.relation.referencesAgarwal, S., Lohia, P., Dwivedi, D.K., Study of optical parameters of Te(1−x) (GeSe0.5) Scx (0 ≤x≤ 0.15) thin films for optical data storage applications (2023) J. Non-Cryst. Solids, 606
dc.relation.referencesGarcía, A., Siesta: Recent developments and applications (2020) Chem. Phys., 152
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
dc.relation.referencesCeperley, D.M., Alder, B.J., Ground state of the electron gas by a stochastic method (1980) Phys. Rev. Lett., 45, p. 566
dc.relation.referencesKlimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals density functional (2010) J. Phys.: Condens. Matter, 22, p. 22201
dc.relation.referencesPeng, X., Wei, Q., Copple, A., Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene (2014) Phys. Rev. B, 90, p. 85402
dc.relation.referencesZhao, Y., Du, Z., Wang, L., Liu, M., Hu, X., Yao, B., Li, X., Kan, E., Tuning the optical absorption performance of MoS2 monolayers with compressive strain (2022) Nanoscale, 14, p. 17065
dc.relation.referencesTang, K., Qi, W., Li, Y., Wang, T., Electronic properties of van der Waals heterostructure of black phosphorus and MoS2 (2018) J. Phys. Chem. C, 122, p. 7027
dc.relation.referencesZhang, Z., Ouyang, G., Band modulation of black phosphorus and molybdenum disulfide van der waals heterojunction: Twist and electric field effects (2018) ACS Appl. Energy Mater, 1, p. 5675
dc.relation.referencesGuo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C., Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers (2014) J. Phys. Chem. C, 118, p. 14051
dc.relation.referencesRadzwan, A., Ahmed, R., Shaari, A., Lawal, A., Ab initio calculations of optoelectronic properties of antimony sulfide nano-thin film for solar cell applications (2019) Results Phys., 15
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record