Show simple item record

dc.contributor.authorSalazar J.P
dc.contributor.authorSaldarriaga J.F
dc.contributor.authorZapata D
dc.contributor.authorLópez J.E.
dc.date.accessioned2024-07-31T21:06:56Z
dc.date.available2024-07-31T21:06:56Z
dc.date.created2024
dc.identifier.issn496979
dc.identifier.urihttp://hdl.handle.net/11407/8415
dc.descriptionGold mining has helped many countries and regions grow and prosper. Yet, because of the significant environmental effects produced, waste management (mine tailings) has emerged as a crucial issue for the sector. In this study, the concentrations of several potential toxic elements (PTEs) (Fe, Zn, Cu, As, Hg, Pb, Cr, Cd, and Ni) in mine tailings from four gold mining operations (Yalí, Puerto Berrio, Buriticá 1, and Buriticá 2,) were quantified. A biomonitoring system has also been suggested, along with two environmental risk indexes for ecosystems and human health. To do this, composite samples of tailings were collected from the four regions. A PTEs analysis using an ICP-OES as well as physicochemical characterization (pH, electrical conductivity, cation exchange capacity, organic matter) have been performed. Indicators such as antioxidant activity and H2O2 content in Phaseolus vulgaris plants have been used to estimate the bioavailability of PTEs. In contrast to the pseudo-total concentration, the data showed that the bioavailable concentration of PTEs correlated with the risk. The ecological system and public health are more at risk from the mine tailings in Buriticá and Puerto Berrio. It has been demonstrated that P. vulgaris is a quick and effective technique to assess the danger to the environment and public health connected with mining regions, according to the suggested biomonitoring system. The findings of this study can assist the relevant authorities in taking quick action to improve environmental protection and risk management of hazardous waste in gold mining areas. © 2024, The Author(s).
dc.language.isoeng
dc.publisherInstitute for Ionics
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85183756205&doi=10.1007%2fs11270-024-06893-0&partnerID=40&md5=6b2e004882da50880f44c6c956966762
dc.sourceWater, Air, and Soil Pollution
dc.sourceWater Air Soil Pollut.
dc.sourceScopus
dc.subjectBioaccumulationeng
dc.subjectEnvironmental Managementeng
dc.subjectGeochemical Indiceseng
dc.subjectHazardous Wasteeng
dc.subjectHeavy Metalseng
dc.titleDetermination of Bioavailability, Potential Ecological and Human Health Risks, and Biomonitoring of Potential Toxic Elements in Gold Mine Tailings from Four Areas of Antioquia, Colombiaeng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.1007/s11270-024-06893-0
dc.relation.citationvolume235
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSalazar, J.P., Center for Renewable Natural Resources, La Salada, National Training Service, SENA, Km 5 Vía Caldas, La Pintada, 055448, Colombia
dc.affiliationSaldarriaga, J.F., Department of Civil and Environmental engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, 111711, Colombia
dc.affiliationZapata, D., Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, 050026, Colombia
dc.affiliationLópez, J.E., Facultad de Arquitectura E Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 # 65-46, Medellín, 050034, Colombia, Facultad de Ingeniería, Universidad de Medellín, Carrera 87 N° 30-65, Medellín, 050026, Colombia
dc.relation.referencesAcosta-Luque, M.P., López, J.E., Henao, N., Zapata, D., Giraldo, J.C., Saldarriaga, J.F., Remediation of Pb-contaminated soil using biochar-based slow-release P fertilizer and biomonitoring employing bioindicators (2023) Science and Reports, 13, p. 1657
dc.relation.referencesAdamo, P., Zampella, M., Chemical speciation to assess potentially toxic metals’ (PTMs’) bioavailability and geochemical forms in polluted soils (2008) Environmental Geochemistry, pp. 175-212. , in:,., Elsevier., https://doi.org/10.1016/B978-0-444-53159-9.00009-7
dc.relation.referencesAdewumi, A.J., Laniyan, T.A., Contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area Northwest Nigeria (2020) Science of the Total Environment, 718. , &, (,).,.,., https://doi.org/10.1016/j.scitotenv.2020.137235
dc.relation.referencesAdiansyah, J.S., Rosano, M., Vink, S., Keir, G., A framework for a sustainable approach to mine tailings management: Disposal strategies (2015) Journal of Cleaner Production, 108, pp. 1050-1062
dc.relation.referencesAkoto, R., Anning, A.K., Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana (2021) Environment Advance, 3, p. 100028
dc.relation.referencesHeavy Metals in Soils, Environmental Pollution (2013) Springer Netherlands, Dordrecht, , https://doi.org/10.1007/978-94-007-4470-7
dc.relation.referencesArias Espana, V.A., Rodriguez Pinilla, A.R., Bardos, P., Naidu, R., Contaminated land in Colombia}: {A critical review of current status and future approach for the management of contaminated sites (2018) Science of the Total Environment, 618, pp. 199-209
dc.relation.referencesArroyave, C., Tolrà, R., Thuy, T., Barceló, J., Poschenrieder, C., Differential aluminum resistance in Brachiaria species (2013) Environmental and Experimental Botany., 89, pp. 11-18
dc.relation.referencesBarcelos, D.A., Pontes, F.V.M., da Silva, F.A.N.G., Castro, D.C., dos Anjos, N.O.A., Castilhos, Z.C., Gold mining tailing: Environmental availability of metals and human health risk assessment (2020) Journal of Hazardous Materials, 397, p. 122721
dc.relation.referencesBecerra-Agudelo, E., López, J.E., Betancur-García, H., Carbal-Guerra, J., Torres-Hernández, M., Saldarriaga, J.F., Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia (2022) Heliyon, 8
dc.relation.referencesBetancur-Corredor, B., Loaiza-Usuga, J.C., Denich, M., Borgemeister, C., Gold mining as a potential driver of development in Colombia: Challenges and opportunities (2018) Journal of Cleaner Production, 199, pp. 538-553
dc.relation.referencesBuch, A.C., Niemeyer, J.C., Marques, E.D., Silva-Filho, E.V., Ecological risk assessment of trace metals in soils affected by mine tailings (2021) Journal of Hazardous Materials, 403, p. 123852
dc.relation.referencesBueno, P.C., Bellido, E., Rubí, J.A.M., Ballesta, R.J., Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain) (2009) Environmental Geology, 56, pp. 815-824
dc.relation.referencesBustamante, N., Danoucaras, N., McIntyre, N., Díaz-Martínez, J.C., Restrepo-Baena, O.J., Review of improving the water management for the informal gold mining in Colombia (2016) Revista Facultad De Ingeniería Universidad De Antioquia, , https://doi.org/10.17533/udea.redin.n79a16
dc.relation.referencesCastañeda-Restrepo, I., Salzar Giraldo, J.P., López, J.E., Disponibilidad y niveles de contaminación de cadmio y plomo en cuatro suelos colombianos. Un análisis del riesgo a la salud humana y al ecosistema (2022) Respuestas, 26. , https://doi.org/10.22463/0122820X.3029
dc.relation.referencesChong, T.M., Abdullah, M.A., Fadzillah, N.M., Lai, O.M., Lajis, N.H., Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic antioxidant responses in Morinda elliptica (2005) Enyzme and Microbial Technology, 36, pp. 469-477
dc.relation.referencesFavas, P.J.C., Pratas, J., Gomes, M.E.P., Cala, V., Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: Environmental implications (2011) J. Geochemical Explor., 111, pp. 160-171
dc.relation.referencesGagnon, V., Rodrigue-Morin, M., Migneault, M., Tardif, A., Garneau, L., Lalonde, S., Shipley, B., Roy, S., Survival, growth and element translocation by 4 plant species growing on acidogenic gold mine tailings in Québec (2020) Ecological engineering, 151, p. 105855
dc.relation.referencesGill, S.S., Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants (2010) Plant Physiology and Biochemistry, 48, pp. 909-930
dc.relation.referencesGutiérrez-Mosquera, H., Shruti, V.C., Jonathan, M.P., Roy, P.D., Rivera-Rivera, D.M., Metal concentrations in the beach sediments of Bahia Solano and Nuquí along the Pacific coast of Chocó, Colombia: A baseline study (2018) Marine Pollution Bulletin, 135, pp. 1-8
dc.relation.referencesGutiérrez-Mosquera, H., Sujitha, S.B., Jonathan, M.P., Sarkar, S.K., Medina-Mosquera, F., Ayala-Mosquera, H., Morales-Mira, G., Arreola-Mendoza, L., Mercury levels in human population from a mining district in Western Colombia (2018) Journal of Environmental Sciences, 68, pp. 83-90
dc.relation.referencesHakanson, L., An ecological risk index for aquatic pollution control.a sedimentological approach (1980) Water Research, 14, pp. 975-1001
dc.relation.referencesIslam, M.S., Ahmed, M.K., Raknuzzaman, M., Habibullah-Al-Mamun, M., Kundu, G.K., Heavy metals in the industrial sludge and their ecological risk: A case study for a developing country (2017) J. Geochemical Explor., 172, pp. 41-49
dc.relation.referencesJiang, L., Sun, H., Peng, T., Ding, W., Liu, B., Liu, Q., Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings (2021) Journal of Environmental Management, 290, p. 112639
dc.relation.referencesJorge Mendoza, C., Tatiana Garrido, R., Cristian Quilodrán, R., Matías Segovia, C., José Parada, A., Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test (2017) Chemosphere, 176, pp. 81-88
dc.relation.referencesKiventerä, J., Sreenivasan, H., Cheeseman, C., Kinnunen, P., Illikainen, M., Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime (2018) Journal of Environmental Chemical engineering, 6, pp. 6530-6536
dc.relation.referencesKodirov, O., Kersten, M., Shukurov, N., Martín Peinado, F.J., Trace metal(loid) mobility in waste deposits and soils around Chadak mining area (2018) Uzbekistan. Sci. Total Environ., 622-623, pp. 1658-1667
dc.relation.referencesKusin, F.M., Azani, N.N.M., Hasan, S.N.M.S., Sulong, N.A., Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment (2018) CATENA, 165, pp. 454-464
dc.relation.referencesKwon, M.J., Yang, J.-S., Lee, S., Lee, G., Ham, B., Boyanov, M.I., Kemner, K.M., O’Loughlin, E.J., Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au–Ag mine tailings (2015) Journal of Hazardous Materials, 296, pp. 147-157
dc.relation.referencesLeudo, A.M., Cruz, Y., Montoya-Ruiz, C., Delgado, M.D., Saldarriaga, J.F., Mercury Phytoremediation with Lolium perenne-Mycorrhizae in Contaminated Soils (2020) Sustainability, 12, p. 3795
dc.relation.referencesLim, H.S., Lee, J.S., Chon, H.T., Sager, M., Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea (2008) Journal of Geochemical Exploration, 96, pp. 223-230
dc.relation.referencesLópez, J.E., Arroyave, C., Aristizábal, A., Almeida, B., Builes, S., Chávez, E., Reducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to field (2022) Heliyon, 8 (6)
dc.relation.referencesLópez, J.E., Zapata, D., Saldarriaga, J.F., Evaluation of different composting systems on an industrial scale as a contribution to the circular economy and its impact on human health (2023) J Air Waste Manage Assoc, 73, pp. 679-694
dc.relation.referencesMarrugo-Negrete, J., Pinedo-Hernández, J., Díez, S., Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú {River} {Basin}, {Colombia} (2017) Environmental Research, 154, pp. 380-388
dc.relation.referencesMeers, E., Samson, R., Tack, F.M.G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., Verloo, M.G., Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris (2007) Environmental and Experimental Botany, 60, pp. 385-396
dc.relation.referencesMedina Tripodi, E.E., Gamboa Rueda, J.A., Aguirre Céspedes, C., Delgado Vega, J., Collao Gómez, C., Characterization and geostatistical modelling of contaminants and added value metals from an abandoned Cu–Au tailing dam in Taltal (Chile) (2019) Journal of South American Earth Sciences, 93, pp. 183-202
dc.relation.referencesMorales Ruano, S., Martín-Peinado, F.J., Estepa Molina, C.M., Bagur-González, M.G., A quick methodology for the evaluation of preliminary toxicity levels in soil samples associated to a potentially heavy-metal pollution in an abandoned ore mining site (2019) Chemosphere, 222, pp. 345-354
dc.relation.referencesNgole-Jeme, V.M., Fantke, P., Ecological and human health risks associated with abandoned gold mine tailings contaminated soil (2017) PLoS ONE, 12
dc.relation.referencesNyarko, B.J.B., Determination of arsenic in some water bodies, untreated ore and tailing samples at Konongo in the Ashanti region of Ghana and its surrounding towns and villages by instrumental neutron activation analysis (2001) Journal of Radioanalytical and Nuclear Chemistry, 249, pp. 581-585
dc.relation.referencesOlivero-Verbel, J., Caballero-Gallardo, K., Turizo-Tapia, A., Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia) (2015) Environmental Science and Pollution Research, 22, pp. 5895-5907
dc.relation.referencesOrimoloye, I.R., Ololade, O.O., Potential implications of gold-mining activities on some environmental components: A global assessment (1990 to 2018) (2020) J. King Saud Univ. - Sci., 32, pp. 2432-2438
dc.relation.referencesPinedo-Hernández, J., Marrugo-Negrete, J., Díez, S., Speciation and bioavailability of mercury in sediments impacted by gold mining in {Colombia} (2015) Chemosphere, 119, pp. 1289-1295
dc.relation.referencesProvoost, J., Cornelis, C., Swartjes, F., Comparison of soil clean-up standards for trace elements between countries: Why do they differ? (2006) Journal of Soils and Sediments, 6, pp. 173-181
dc.relation.referencesRedwan, M., Bamousa, A.O., Characterization and environmental impact assessment of gold mine tailings in arid regions: A case study of Barramiya gold mine area, Eastern Desert (2019) Egypt Journal. African Earth Science, 160, p. 103644
dc.relation.referencesRemon, E., Bouchardon, J.-L., Le Guédard, M., Bessoule, J.-J., Conord, C., Faure, O., Are plants useful as accumulation indicators of metal bioavailability? (2013) Environmental Pollution, 175, pp. 1-7
dc.relation.referencesRestrepo-Sánchez, N.E., Acevedo-Betancourth, L., Henao-Murillo, B., Peláez-Jaramillo, C., Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris (2015) Journal of Environmental Sciences, 31, pp. 61-67
dc.relation.referencesRodríguez-Seijo, A., Lourenço, J., Arenas-Lago, D., Mendo, S., Vega, F.A., Pereira, R., Chemical availability versus bioavailability of potentially toxic elements in mining and quarry soils (2020) Chemosphere, 251, p. 126421
dc.relation.referencesSalazar, G.J.P., Alfaro-De la Torre, M.C., Aguirre, R.N.J., Briones-Gallardo, R., Cedeño, C.J., Peñuela, M.G.A., Geochemical fractionation of manganese in the Riogrande II reservoir, Antioquia (2013) Colombia Environment Earth Science, 69, pp. 197-208
dc.relation.referencesSaldarriaga, J.F., Cruz, Y., López, J.E., Preliminary study of the production of metabolites from in vitro cultures of C ensiformis (2020) BMC Biotechnology, 20, p. 49
dc.relation.referencesSauerwein, T., Gold mining and development in Côte d’Ivoire: Trajectories, opportunities and oversights (2020) Land Use Policy, 91, p. 104323
dc.relation.referencesSerrano, M.F., López, J.E., Saldarriaga, J.F., Use of activated rice husk biochar for the removal of metals and microorganisms from treated leachates from landfills (2023) Journal of Material Cycles and Waste Management, 25, pp. 3414-3424
dc.relation.referencesSmolders, E., Mertens, J., Cadmium (2013) Heavy {Metals} in {Soils}, pp. 283-311. , https://doi.org/10.1007/978-94-007-4470-7_10, Alloway, B.J, Springer Netherlands, Dordrecht
dc.relation.referencesSposito, G., (2008) The chemistry of soils, , 2, Oxford University Press, Oxford
dc.relation.referencesSuppes, R., Heuss-Aßbichler, S., Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project (2021) Journal of Cleaner Production, 297, p. 126446
dc.relation.referencesTeixeira, R.A., de Souza, E.S., de Lima, M.W., Dias, Y.N., da Silveira Pereira, W.V., Fernandes, A.R., Index of geoaccumulation and spatial distribution of potentially toxic elements in the Serra Pelada gold mine (2019) Journal of Soils and Sediments, 19, pp. 2934-2945
dc.relation.referencesToujaguez, R., Ono, F.B., Martins, V., Cabrera, P.P., Blanco, A.V., Bundschuh, J., Guilherme, L.R.G., Arsenic bioaccessibility in gold mine tailings of Delita (2013) Journal of Hazardous Materials, 262, pp. 1004-1013
dc.relation.references(2012) Integrated Risk Information System of the US Environmental Protection Agency.
dc.relation.referencesUugwanga, M.N., Kgabi, N.A., Assessment of metals pollution in sediments and tailings of Klein Aub and Oamites mine sites Namibia (2020) Environment Advance, 2, p. 100006
dc.relation.referencesWang, L., Ji, B., Hu, Y., Liu, R., Sun, W., A review on in situ phytoremediation of mine tailings (2017) Chemosphere, 184, pp. 594-600
dc.relation.referencesXiao, R., Wang, S., Li, R., Wang, J.J., Zhang, Z., Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi (2017) China Ecotoxicology Environment Safety, 141, pp. 17-24
dc.relation.referencesZhu, Y., Wang, Z., Li, Z., Yu, H., Experimental research on the utilization of gold mine tailings in magnesium potassium phosphate cement (2022) Journal Building engineering., 45, p. 103313
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record