REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distortion Rules: Diene Ring Size Effects in Diels-Alder Reactions with Triazolinediones

Thumbnail
Share this
Date
2024
Author
Hernández-Mancera J.P
Rojas-Valencia N
Núñez-Zarur F.

Citación

       
TY - GEN T1 - Distortion Rules: Diene Ring Size Effects in Diels-Alder Reactions with Triazolinediones Y1 - 2024 UR - http://hdl.handle.net/11407/8416 PB - John Wiley and Sons Inc AB - Triazolinediones (TADs) are highly reactive electrophiles used in several processes within the field of organic chemistry, especially in Diels-Alder cycloadditions. The reactions of TADs with cyclic dienes have been observed to depend on the diene structure and size. To investigate the role of diene structure in the reactivity of TADs, computational chemistry based on DFT and Activation Strain Model were employed to quantitatively assess the impact of distortion and interaction energies on the observed reactivity. Calculations suggest that the reactions are endo selective based on lower energy barriers compared to the exo pathway. Additionally, the trends in reactivity agree with experimental observations: cyclopentadiene is the more reactive diene, followed by cyclohexadiene and cycloheptadiene. The ASM analysis reveals that this trend is a consequence of the degree of distortion the reactants along the reaction coordinate. These distortion energies also allowed to explain why the endo selective route is preferred over the exo one. © 2024 Wiley-VCH GmbH. ER - @misc{11407_8416, author = {}, title = {Distortion Rules: Diene Ring Size Effects in Diels-Alder Reactions with Triazolinediones}, year = {2024}, abstract = {Triazolinediones (TADs) are highly reactive electrophiles used in several processes within the field of organic chemistry, especially in Diels-Alder cycloadditions. The reactions of TADs with cyclic dienes have been observed to depend on the diene structure and size. To investigate the role of diene structure in the reactivity of TADs, computational chemistry based on DFT and Activation Strain Model were employed to quantitatively assess the impact of distortion and interaction energies on the observed reactivity. Calculations suggest that the reactions are endo selective based on lower energy barriers compared to the exo pathway. Additionally, the trends in reactivity agree with experimental observations: cyclopentadiene is the more reactive diene, followed by cyclohexadiene and cycloheptadiene. The ASM analysis reveals that this trend is a consequence of the degree of distortion the reactants along the reaction coordinate. These distortion energies also allowed to explain why the endo selective route is preferred over the exo one. © 2024 Wiley-VCH GmbH.}, url = {http://hdl.handle.net/11407/8416} }RT Generic T1 Distortion Rules: Diene Ring Size Effects in Diels-Alder Reactions with Triazolinediones YR 2024 LK http://hdl.handle.net/11407/8416 PB John Wiley and Sons Inc AB Triazolinediones (TADs) are highly reactive electrophiles used in several processes within the field of organic chemistry, especially in Diels-Alder cycloadditions. The reactions of TADs with cyclic dienes have been observed to depend on the diene structure and size. To investigate the role of diene structure in the reactivity of TADs, computational chemistry based on DFT and Activation Strain Model were employed to quantitatively assess the impact of distortion and interaction energies on the observed reactivity. Calculations suggest that the reactions are endo selective based on lower energy barriers compared to the exo pathway. Additionally, the trends in reactivity agree with experimental observations: cyclopentadiene is the more reactive diene, followed by cyclohexadiene and cycloheptadiene. The ASM analysis reveals that this trend is a consequence of the degree of distortion the reactants along the reaction coordinate. These distortion energies also allowed to explain why the endo selective route is preferred over the exo one. © 2024 Wiley-VCH GmbH. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Triazolinediones (TADs) are highly reactive electrophiles used in several processes within the field of organic chemistry, especially in Diels-Alder cycloadditions. The reactions of TADs with cyclic dienes have been observed to depend on the diene structure and size. To investigate the role of diene structure in the reactivity of TADs, computational chemistry based on DFT and Activation Strain Model were employed to quantitatively assess the impact of distortion and interaction energies on the observed reactivity. Calculations suggest that the reactions are endo selective based on lower energy barriers compared to the exo pathway. Additionally, the trends in reactivity agree with experimental observations: cyclopentadiene is the more reactive diene, followed by cyclohexadiene and cycloheptadiene. The ASM analysis reveals that this trend is a consequence of the degree of distortion the reactants along the reaction coordinate. These distortion energies also allowed to explain why the endo selective route is preferred over the exo one. © 2024 Wiley-VCH GmbH.
URI
http://hdl.handle.net/11407/8416
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com