Show simple item record

dc.contributor.authorBallesteros J.A
dc.contributor.authorRamírez V G.M
dc.contributor.authorMoreira F
dc.contributor.authorSolano A
dc.contributor.authorPelaez C.A.
dc.date.accessioned2024-07-31T21:06:57Z
dc.date.available2024-07-31T21:06:57Z
dc.date.created2024
dc.identifier.issn26249898
dc.identifier.urihttp://hdl.handle.net/11407/8425
dc.descriptionThis paper introduces a study employing artificial intelligence (AI) to utilize computer vision algorithms for detecting human emotions in video content during user interactions with diverse visual stimuli. The research aims to unveil the creation of software capable of emotion detection by leveraging AI algorithms and image processing pipelines to identify users' facial expressions. The process involves assessing users through images and facilitating the implementation of computer vision algorithms aligned with psychological theories defining emotions and their recognizable features. The study demonstrates the feasibility of emotion recognition through convolutional neural networks (CNN) and software development and training based on facial expressions. The results highlight successful emotion identification; however, precision improvement necessitates further training for contexts with more diverse images and additional algorithms to distinguish closely related emotional patterns. The discussion and conclusions emphasize the potential of A.I. and computer vision algorithms in emotion detection, providing insights into software development, ongoing training, and the evolving landscape of emotion recognition technology. Further training is necessary for contexts with more diverse images, alongside additional algorithms that can effectively distinguish between facial expressions depicting closely related emotional patterns, enhancing certainty and accuracy. Copyright © 2024 Ballesteros, Ramírez V., Moreira, Solano and Pelaez.
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85184899293&doi=10.3389%2ffcomp.2024.1359471&partnerID=40&md5=41cf1f07ad8ee289fc4cb9ddfa3faca4
dc.sourceFrontiers in Computer Science
dc.sourceFrontier. Comput. Sci.
dc.sourceScopus
dc.subjectA.Ieng
dc.subjectConvolutional neural networkeng
dc.subjectFacial emotioneng
dc.subjectImageseng
dc.subjectRecognitioneng
dc.titleFacial emotion recognition through artificial intelligenceeng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Sistemasspa
dc.type.spaArtículo
dc.identifier.doi10.3389/fcomp.2024.1359471
dc.relation.citationvolume6
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationBallesteros, J.A., Maestria en Inteligencia Artificial, Universidad Internacional de La Rioja, Logroño, Spain
dc.affiliationRamírez V, G.M., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationMoreira, F., REMIT, IJP, Universidade Portucalense, Porto and IEETA, Universidade de Aveiro, Aveiro, Portugal
dc.affiliationSolano, A., Departamento de Operaciones y Ingeniería de Sistemas, Universidad Autónoma de Occidente, Cali, Colombia
dc.affiliationPelaez, C.A., Departamento de Operaciones y Ingeniería de Sistemas, Universidad Autónoma de Occidente, Cali, Colombia
dc.relation.referencesAlbaladejo, X., Díaz, J.R., Quesada, A.X., Iglesias, J., (2021) Proyectos agiles.org, , https://proyectosagiles.org/pm-partners, Available online at:, (accessed July 12, 2023
dc.relation.referencesBanafa, A., (2016) Qué es la computación afectiva?, , https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/, OpenMind BBVA. Available online at:, (accessed September 14, 2023
dc.relation.referencesBledsoe, W.W., (1966) Man-Machine Facial Recognition: Report on a Large-Scale Experiment. Technical Report PRI 22, , Palo Alto, CA, Panoramic Research
dc.relation.referencesCenteno, I.D.P., (2021) MTCNN Face Detection Implementation for TensorFlow, as a Pip Package, , https://github.com/ipazc/mtcnn, Available online at:, (accessed September 14, 2023
dc.relation.referencesChollet, F., “Xception: deep learning with depthwise separable convolutions,” (2017) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251-1258. , Honolulu, HI
dc.relation.referencesDarwin, C., Prodger, P., (1996) The Expression of the Emotions in Man and Animals, , Oxford, Oxford University Press
dc.relation.referencesEkman, P., Strong evidence for universals in facial expressions: a reply to Russell's mistaken critique (1994) Psychol. Bull, 115, pp. 268-287. , 8165272
dc.relation.referencesEkman, P., Basic emotions (1999) Handb. Cogn. Emot, 3, pp. 45-60
dc.relation.referencesEkman, P., Sorenson, E., Friesen, W., Pan-cultural elements in facial displays of emotion (1969) Science, 164, pp. 86-88. , 5773719
dc.relation.referencesFrijda, N.H., (2017) The Laws of Emotion, , London, Psychology Press
dc.relation.referencesGarcía, A.R., La educación emocional, el autoconcepto, la autoestima y su importancia en la infancia (2013) Estudios y propuestas socioeducativas, 44, pp. 241-257
dc.relation.referencesGhotbi, N., The ethics of emotional artificial intelligence: a mixed method analysis (2023) Asian Bioethics Rev, 15, pp. 417-430. , 37808444
dc.relation.referencesHernández Sampieri, R., Fernández, C., Baptista, L.C., (2003) Metodolog, , í, Chile: McGraw Hill
dc.relation.references(2019) FER, , https://www.kaggle.com/, −, Available online at:, (accessed October 5, 2023
dc.relation.referencesKrizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2017) Commun. ACM, 60, pp. 84-90
dc.relation.referencesLee, Y.S., Park, W.H., Diagnosis of depressive disorder model on facial expression based on fast R-CNN (2022) Diagnostics, 12, p. 317. , 35204407
dc.relation.referencesLu, X., Deep learning based emotion recognition and visualization of figural representation (2022) Front. Psychol, 12, p. 818833. , 35069400
dc.relation.references(2023) Integral Image, , https://www.mathworks.com/help/images/integral-image.html, Available online at:, (accessed October 16, 2023
dc.relation.referencesMonteith, S., Glenn, T., Geddes, J., Whybrow, P.C., Bauer, M., Commercial use of emotion artificial intelligence (AI): implications for psychiatry (2022) Curr. Psychiatr. Rep, 24, pp. 203-211. , 35212918
dc.relation.referencesPlutchik, R., The nature of emotions (2001) Am. Scientist, 89, pp. 334-350
dc.relation.referencesPlutchik, R.E., Conte, H.R., (1997) Circumplex Models of Personality and Emotions, , Washington, DC, American Psychological Association
dc.relation.referencesRussell, J.A., A circumplex model of effect (1980) J. Personal. Soc. Psychol, 39, p. 1161
dc.relation.referencesRussell, J.A., “Reading emotions from and into faces: resurrecting a dimensional-contextual perspective,” (1997) The Psychology of Facial Expression, pp. 295-320. , Russell J.A., Fernández-Dols J.M., (eds), Cambridge University Press, Editions de la Maison des Sciences de l'Homme, eds, (
dc.relation.referencesSalovey, P., Mayer, J., Emotional Intelligence (1990) Imag. Cogn. Personal, 9, pp. 185-211
dc.relation.referencesSambare, M., (2023) Kraggle. FER-013. Learn Facial Expresions From a Image, , https://www.kaggle.com/datasets/msambare/fer2013, Available online at:, (accessed October 16, 2023
dc.relation.referencesSchapire, R.E., “Explaining adaboost,” (2013) Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, pp. 37-52. , Berlin
dc.relation.referencesHeidelberg, Springer
dc.relation.referencesSimonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition (2014) arXiv preprint arXiv:1409.1556
dc.relation.referencesSotil, D.A., (2022) RPubs, , https://rpubs.com/, Available online at:, (accessed October 14, 2023
dc.relation.referencesTanabe, H., Shiraishi, T., Sato, H., Nihei, M., Inoue, T., Kuwabara, C., A concept for emotion recognition systems for children with profound intellectual and multiple disabilities based on artificial intelligence using physiological and motion signals (2023) Disabil. Rehabil. Assist. Technol, , 36695503, 1–8
dc.relation.referencesThomas, J.R., Nelson, J.K., Silverman, J., (2005) Research Methods in Physical Activity, 5th Edn, , Champaign, IL, Human Kinetics, 28019727
dc.relation.referencesWang, Y.Q., An analysis of the Viola-Jones face detection algorithm (2014) Image Process. Line, 4, pp. 128-148
dc.relation.referencesZhang, K., Zhang, Z., Li, Z., Qiao, Y., Joint face detection and alignment using multitask cascaded convolutional networks (2016) IEEE Sign. Process. Lett, 23, pp. 1499-1503
dc.relation.referencesZhao, J., Wu, M., Zhou, L., Wang, X., Jia, J., Cognitive psychology-based artificial intelligence review (2022) Front. Neurosci, 16, p. 1024316
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record