dc.contributor.author | Ballesteros J.A | |
dc.contributor.author | Ramírez V G.M | |
dc.contributor.author | Moreira F | |
dc.contributor.author | Solano A | |
dc.contributor.author | Pelaez C.A. | |
dc.date.accessioned | 2024-07-31T21:06:57Z | |
dc.date.available | 2024-07-31T21:06:57Z | |
dc.date.created | 2024 | |
dc.identifier.issn | 26249898 | |
dc.identifier.uri | http://hdl.handle.net/11407/8425 | |
dc.description | This paper introduces a study employing artificial intelligence (AI) to utilize computer vision algorithms for detecting human emotions in video content during user interactions with diverse visual stimuli. The research aims to unveil the creation of software capable of emotion detection by leveraging AI algorithms and image processing pipelines to identify users' facial expressions. The process involves assessing users through images and facilitating the implementation of computer vision algorithms aligned with psychological theories defining emotions and their recognizable features. The study demonstrates the feasibility of emotion recognition through convolutional neural networks (CNN) and software development and training based on facial expressions. The results highlight successful emotion identification; however, precision improvement necessitates further training for contexts with more diverse images and additional algorithms to distinguish closely related emotional patterns. The discussion and conclusions emphasize the potential of A.I. and computer vision algorithms in emotion detection, providing insights into software development, ongoing training, and the evolving landscape of emotion recognition technology. Further training is necessary for contexts with more diverse images, alongside additional algorithms that can effectively distinguish between facial expressions depicting closely related emotional patterns, enhancing certainty and accuracy. Copyright © 2024 Ballesteros, Ramírez V., Moreira, Solano and Pelaez. | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media SA | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184899293&doi=10.3389%2ffcomp.2024.1359471&partnerID=40&md5=41cf1f07ad8ee289fc4cb9ddfa3faca4 | |
dc.source | Frontiers in Computer Science | |
dc.source | Frontier. Comput. Sci. | |
dc.source | Scopus | |
dc.subject | A.I | eng |
dc.subject | Convolutional neural network | eng |
dc.subject | Facial emotion | eng |
dc.subject | Images | eng |
dc.subject | Recognition | eng |
dc.title | Facial emotion recognition through artificial intelligence | eng |
dc.type | article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | spa |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3389/fcomp.2024.1359471 | |
dc.relation.citationvolume | 6 | |
dc.publisher.faculty | Facultad de Ingenierías | spa |
dc.affiliation | Ballesteros, J.A., Maestria en Inteligencia Artificial, Universidad Internacional de La Rioja, Logroño, Spain | |
dc.affiliation | Ramírez V, G.M., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Moreira, F., REMIT, IJP, Universidade Portucalense, Porto and IEETA, Universidade de Aveiro, Aveiro, Portugal | |
dc.affiliation | Solano, A., Departamento de Operaciones y Ingeniería de Sistemas, Universidad Autónoma de Occidente, Cali, Colombia | |
dc.affiliation | Pelaez, C.A., Departamento de Operaciones y Ingeniería de Sistemas, Universidad Autónoma de Occidente, Cali, Colombia | |
dc.relation.references | Albaladejo, X., Díaz, J.R., Quesada, A.X., Iglesias, J., (2021) Proyectos agiles.org, , https://proyectosagiles.org/pm-partners, Available online at:, (accessed July 12, 2023 | |
dc.relation.references | Banafa, A., (2016) Qué es la computación afectiva?, , https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/, OpenMind BBVA. Available online at:, (accessed September 14, 2023 | |
dc.relation.references | Bledsoe, W.W., (1966) Man-Machine Facial Recognition: Report on a Large-Scale Experiment. Technical Report PRI 22, , Palo Alto, CA, Panoramic Research | |
dc.relation.references | Centeno, I.D.P., (2021) MTCNN Face Detection Implementation for TensorFlow, as a Pip Package, , https://github.com/ipazc/mtcnn, Available online at:, (accessed September 14, 2023 | |
dc.relation.references | Chollet, F., “Xception: deep learning with depthwise separable convolutions,” (2017) Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251-1258. , Honolulu, HI | |
dc.relation.references | Darwin, C., Prodger, P., (1996) The Expression of the Emotions in Man and Animals, , Oxford, Oxford University Press | |
dc.relation.references | Ekman, P., Strong evidence for universals in facial expressions: a reply to Russell's mistaken critique (1994) Psychol. Bull, 115, pp. 268-287. , 8165272 | |
dc.relation.references | Ekman, P., Basic emotions (1999) Handb. Cogn. Emot, 3, pp. 45-60 | |
dc.relation.references | Ekman, P., Sorenson, E., Friesen, W., Pan-cultural elements in facial displays of emotion (1969) Science, 164, pp. 86-88. , 5773719 | |
dc.relation.references | Frijda, N.H., (2017) The Laws of Emotion, , London, Psychology Press | |
dc.relation.references | García, A.R., La educación emocional, el autoconcepto, la autoestima y su importancia en la infancia (2013) Estudios y propuestas socioeducativas, 44, pp. 241-257 | |
dc.relation.references | Ghotbi, N., The ethics of emotional artificial intelligence: a mixed method analysis (2023) Asian Bioethics Rev, 15, pp. 417-430. , 37808444 | |
dc.relation.references | Hernández Sampieri, R., Fernández, C., Baptista, L.C., (2003) Metodolog, , í, Chile: McGraw Hill | |
dc.relation.references | (2019) FER, , https://www.kaggle.com/, −, Available online at:, (accessed October 5, 2023 | |
dc.relation.references | Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2017) Commun. ACM, 60, pp. 84-90 | |
dc.relation.references | Lee, Y.S., Park, W.H., Diagnosis of depressive disorder model on facial expression based on fast R-CNN (2022) Diagnostics, 12, p. 317. , 35204407 | |
dc.relation.references | Lu, X., Deep learning based emotion recognition and visualization of figural representation (2022) Front. Psychol, 12, p. 818833. , 35069400 | |
dc.relation.references | (2023) Integral Image, , https://www.mathworks.com/help/images/integral-image.html, Available online at:, (accessed October 16, 2023 | |
dc.relation.references | Monteith, S., Glenn, T., Geddes, J., Whybrow, P.C., Bauer, M., Commercial use of emotion artificial intelligence (AI): implications for psychiatry (2022) Curr. Psychiatr. Rep, 24, pp. 203-211. , 35212918 | |
dc.relation.references | Plutchik, R., The nature of emotions (2001) Am. Scientist, 89, pp. 334-350 | |
dc.relation.references | Plutchik, R.E., Conte, H.R., (1997) Circumplex Models of Personality and Emotions, , Washington, DC, American Psychological Association | |
dc.relation.references | Russell, J.A., A circumplex model of effect (1980) J. Personal. Soc. Psychol, 39, p. 1161 | |
dc.relation.references | Russell, J.A., “Reading emotions from and into faces: resurrecting a dimensional-contextual perspective,” (1997) The Psychology of Facial Expression, pp. 295-320. , Russell J.A., Fernández-Dols J.M., (eds), Cambridge University Press, Editions de la Maison des Sciences de l'Homme, eds, ( | |
dc.relation.references | Salovey, P., Mayer, J., Emotional Intelligence (1990) Imag. Cogn. Personal, 9, pp. 185-211 | |
dc.relation.references | Sambare, M., (2023) Kraggle. FER-013. Learn Facial Expresions From a Image, , https://www.kaggle.com/datasets/msambare/fer2013, Available online at:, (accessed October 16, 2023 | |
dc.relation.references | Schapire, R.E., “Explaining adaboost,” (2013) Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, pp. 37-52. , Berlin | |
dc.relation.references | Heidelberg, Springer | |
dc.relation.references | Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition (2014) arXiv preprint arXiv:1409.1556 | |
dc.relation.references | Sotil, D.A., (2022) RPubs, , https://rpubs.com/, Available online at:, (accessed October 14, 2023 | |
dc.relation.references | Tanabe, H., Shiraishi, T., Sato, H., Nihei, M., Inoue, T., Kuwabara, C., A concept for emotion recognition systems for children with profound intellectual and multiple disabilities based on artificial intelligence using physiological and motion signals (2023) Disabil. Rehabil. Assist. Technol, , 36695503, 1–8 | |
dc.relation.references | Thomas, J.R., Nelson, J.K., Silverman, J., (2005) Research Methods in Physical Activity, 5th Edn, , Champaign, IL, Human Kinetics, 28019727 | |
dc.relation.references | Wang, Y.Q., An analysis of the Viola-Jones face detection algorithm (2014) Image Process. Line, 4, pp. 128-148 | |
dc.relation.references | Zhang, K., Zhang, Z., Li, Z., Qiao, Y., Joint face detection and alignment using multitask cascaded convolutional networks (2016) IEEE Sign. Process. Lett, 23, pp. 1499-1503 | |
dc.relation.references | Zhao, J., Wu, M., Zhou, L., Wang, X., Jia, J., Cognitive psychology-based artificial intelligence review (2022) Front. Neurosci, 16, p. 1024316 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |