Mostrar el registro sencillo del ítem

dc.contributor.authorSanchez-Cuasapud D.R
dc.contributor.authorBotero-Botero L.R
dc.contributor.authorHincapié-Pérez M.
dc.date.accessioned2024-07-31T21:06:59Z
dc.date.available2024-07-31T21:06:59Z
dc.date.created2024
dc.identifier.issn3042847
dc.identifier.urihttp://hdl.handle.net/11407/8438
dc.descriptionThe standardization of cultivation processes that allow high levels of conidia growth and formation is required to formulate Trichoderma products to combat fungal diseases in agronomically important crops. This study evaluated the effects of inoculation using different inoculum concentrations (1.0x105, 1.0x106, and 1.0x107 conidia mL-1) and inoculum volumes (10, 30, and 50 mL). Later, it evaluated the effect of adding microelements (CaCO3, KH2PO4, MgSO4
dc.description7H2O, and (NH4)2SO4) on the conidiogenesis of two strains of Trichoderma asperellum (GRB-HA01 and GRB-HA02) in solid-state and liquid fermentation processes. After 12 days of fermentation, the highest conidiogenesis values for Trichoderma asperellum GRB-HA01 (6.9x109±5.7x102 conidia g-1) and Trichoderma asperellum GRB-HA02 (1.3x109±1.4x102 conidia g-1) were achieved using an inoculum volume of 10 mL at a concentration of 1.0x07 conidia mL-1. Adding CaCO3 (1 g g-1), resulted in the highest conidia concentrations for Trichoderma asperellum GRB-HA01 (3.0x1011±2.5x102 conidia g-1) and Trichoderma asperellum GRB-HA02 (8.6x1010±1.1x101 conidia g-1), reducing fermentation times to 9 days. The conidiogenesis obtained with liquid fermentation was lower and affected Trichoderma asperellum GRB-HA01 (3.1x107±1.1x102 conidia g-1) and Trichoderma asperellum GRB-HA02 (3.1x109±2.8x102 conidia g-1). This study showed that inoculation and adding microelements were important factors in the conidiogenesis processes of Trichoderma asperellum GRB-HA01 and GRB-HA02. Additionally, it was evidenced that solid-state fermentations are more efficient than liquid fermentation processes. © 2024, Universidad Nacional de Colombia. All rights reserved.
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85181879133&doi=10.15446%2frfnam.v77n1.108175&partnerID=40&md5=2ca9b3a09d7301882f7ee5941ba0ae89
dc.sourceRevista Facultad Nacional de Agronomia Medellin
dc.sourceRev. Fac. Nac. Agron. Medellín
dc.sourceScopus
dc.subjectCalcium carbonateeng
dc.subjectConidiaeng
dc.subjectFermentationeng
dc.subjectInoculumeng
dc.subjectPotassium dihydrogenate phosphateeng
dc.subjectTrichoderma asperellumeng
dc.titleInoculation and microelements: two important factors for enhanced conidiogenesis of Trichoderma asperellum in solid and liquid fermentation [Inoculación y microelementos: dos factores importantes para mejorar la conidiogénesis de Trichoderma asperellum en fermentación sólida y líquida]eng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.type.spaArtículo
dc.identifier.doi10.15446/rfnam.v77n1.108175
dc.relation.citationvolume77
dc.relation.citationissue1
dc.relation.citationstartpage10601
dc.relation.citationendpage10609
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSanchez-Cuasapud, D.R., University of Medellin, Faculty of engineering, Research Group on Biodiversity, Biotechnology and Bioengineering GRINBIO, Medellin, Colombia
dc.affiliationBotero-Botero, L.R., University of Medellin, Faculty of engineering, Environmental Investigations and Measurements Group GEMA, Medellín, Colombia
dc.affiliationHincapié-Pérez, M.
dc.relation.referencesAdnan, M, Islam, W, Shabbir, A, Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus (2019) Microbial Pathogenesis, 129, pp. 7-18. , https://doi.org/10.1016/j.micpath.2019.01.042
dc.relation.referencesAlarcon, G, Utia, M, Evaluation of three doses of Trichoderma harzianum for the control of black scab (Rhizoctonia solani) of potatoes in Huari Ancash (2020) Peruvian Agricultural Research, 2 (1), pp. 1-5. , https://doi.org/10.51431/par.v2i1.617
dc.relation.referencesBae, S, Mohanta, T, Chung, J, Trichoderma metabolites as biological control agents against Phytophthora pathogens (2016) Biological Control, 92, pp. 128-138. , https://doi.org/10.1016/j.biocontrol.2015.10.005
dc.relation.referencesChakravarthi, B, Singh, S, Kamalraj, S, Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13-H and DBAT from a Taxol-producing endophytic fungus (2020) Scientific Reports, 10, pp. 1-11. , https://doi.org/10.1038/s41598-020-77605-x
dc.relation.referencesChandrashekara, K, Manivannan, S, Chapter 10-Biological control of plant diseases (2012) Eco-friendly innovative approaches in plant disease management, pp. 147-166. , Vaibhav K, Yogendra S and Akhilesh S. (eds). International Book Distributors
dc.relation.referencesCoban, I, Sargin, S, Production of Trichoderma micropropagules as a biocontrol agent in static liquid culture conditions by using an integrated bioreactor system (2019) Biocontrol Science and Technology, 29, pp. 1197-1214. , https://doi.org/10.1080/09583157.2019.1672621
dc.relation.referencesCumagun, C, Chapter 39-Advances in formulation of Trichoderma for biocontrol (2017) Biotechnology and Biology of Trichoderma, pp. 1-5. , Gupta Schmoll M, Estrella A, Upadhyay R, Druzhinina I and Tuohy M. (eds). Elsevier B.V., 531
dc.relation.referencesDastogeer, K, Li, H, Sivasithamparam, K, Wylie, S, In vitro salt and thermal tolerance of fungal endophytes of Nicotiana spp. growing in arid regions of north-western Australia (2018) Archives of Phytopathology and Plant Protection, 51, pp. 602-616. , https://doi.org/10.1080/03235408.2018.1503762
dc.relation.referencesDomingues, F, Queiroz, J, Cabral, J, Fonseca, L, The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30 (2000) Enzyme and Microbial Technology, 26, pp. 394-401. , https://doi.org/10.1016/S0141-0229(99)00166-0
dc.relation.referencesGezgin, Y, Gül, D, Şenşatar, S, Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer (2020) Turkish Journal of Biochemistry, 45, pp. 1-13. , https://doi.org/10.1515/tjb-2018-0378
dc.relation.referencesGonzalez, M, Vicente, G, Isolation of Trichoderma spp. from desert soil, biocontrol potential evaluation and liquid culture conidia production using agricultural fertilizers (2016) Journal of fertilizers and Pesticides, 7, pp. 1-6
dc.relation.referencesHölker, U, Höfer, M, Lenz, J, Biotechnological advantages of laboratory-scale solid-state fermentation with fungi (2004) Applied Microbiology Biotechnology, 64, pp. 175-186. , https://doi.org/10.1007/s00253-003-1504-3
dc.relation.referencesKrystofova, S, Varecka, L, Betina, V, The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation (1995) General Physiology and Biophysics, 14, pp. 323-337. , https://pubmed.ncbi.nlm.nih.gov/8720696/
dc.relation.referencesMartinez, L, (2007) Estandarizacion del proceso de produccion masiva del hongo Trichoderma koningii Th003 mediante fermentacion bifasica a escala piloto (Tesis de pregrado), p. 148. , Pontificia Universidad Javeriana. Colombia
dc.relation.referencesMonga, D, Effect of carbon and nitrogen sources on spore germination, bio-mass production and antifungal metabolites by species of Trichoderma and Gliocladium (2001) Indian Phytopathology, 54, pp. 435-437. , https://www.researchgate.net/publication/331547336
dc.relation.referencesRamos, A, Fiaux, S, Leite, S, Production of 6-pentyl-α-pyrone by Trichoderma harzianum in solid-state fermentation (2008) Brazilian Journal of Microbiology, 39, pp. 712-717. , https://doi.org/10.1590/S1517-83822008000400022
dc.relation.referencesRaut, I, Constantin, M, Vasilescu, G, Optimization of Trichoderma strain cultivation for biocontrol activity (2013) Scientific Bulletin, XVII, pp. 154-159. , https://www.researchgate.net/publication/275208488
dc.relation.referencesRayhane, H, Josiane, M, Gregoria, M, From flasks to single used bioreactor: Scale-up of solid state fermentation process for metabolites and conidia production by Trichoderma asperellum (2020) Journal Environmental Management, 252, pp. 109496-298. , https://doi.org/10.1139/W08-001, https://doi.org/10.1016/j. jenvman.2019.109496 Šimkovič M, Ditte P, Kurucová A et al (2008) Ca2+-dependent induction of conidiation in submerged cultures of Trichoderma viride. Canadian Journal of Microbiology 54: 291
dc.relation.referencesSriram, S, Roopa, K, Savitha, M, Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium (2011) Crop Protection, 30, pp. 1334-1339. , https://doi.org/10.1016/j.cropro.2011.06.003
dc.relation.referencesSteyaert, J, Weld, R, Mendoza, A, Stewart, A, Reproduction without sex: Conidiation in the filamentous fungus Trichoderma (2010) Microbiology, 156, pp. 2887-2900. , https://doi.org/10.1099/mic.0.041715-0
dc.relation.referencesTorres, M, Ortiz, C, Bautista, C, Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México (2015) Revista Mexicana de Biodiversidad, 86, pp. 947-961. , https://doi.org/10.1016/j.rmb.2015.07.012
dc.relation.referencesUrbina, A, Inca, A, Falcón, G, Chitinase production by Trichoderma harzianum grown on a chitin-rich mushroom byproduct formulated medium (2019) Waste and Biomass Valorization, 10, pp. 2915-2923. , https://doi.org/10.1007/s12649-018-0328-4
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem