Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález J.W
dc.contributor.authorFlórez E
dc.contributor.authorCorrea J.D.
dc.date.accessioned2024-07-31T21:07:01Z
dc.date.available2024-07-31T21:07:01Z
dc.date.created2024
dc.identifier.issn1677322
dc.identifier.urihttp://hdl.handle.net/11407/8448
dc.descriptionIn this study, we compare the performance of two phases of MoS2 monolayers: 1T' and 2H, about their ability to adsorb lithium and sodium ions. Employing the density functional theory and molecular dynamics, we include the ion concentration to analyze the electronic structure, ion kinetics, and battery performance. The pristine 2H-MoS2 monolayer is the ground state. However, the charge transfer effects above a critical ion concentration yield a stability change, where the 1T'-MoS2 monolayer with adsorbed ions becomes more stable than the 2H counterpart. The diffusion of ions onto the 1T' monolayer is anisotropic, being more efficient at ion adsorption than the 2H phase. Finally, we calculate the open circuit voltage and specific capacity, confirming that the 1T'-MoS2 phase has great potential for developing lithium/sodium ion batteries. © 2023 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85181907271&doi=10.1016%2fj.molliq.2023.123904&partnerID=40&md5=a54c7318e632ecd1a905212d177c6fd8
dc.sourceJournal of Molecular Liquids
dc.sourceJ Mol Liq
dc.sourceScopus
dc.subjectCharge transfereng
dc.subjectDensity functional theoryeng
dc.subjectElectronic structureeng
dc.subjectGround stateeng
dc.subjectLayered semiconductorseng
dc.subjectLithium batterieseng
dc.subjectMetal ionseng
dc.subjectMolecular dynamicseng
dc.subjectMonolayerseng
dc.subjectOpen circuit voltageeng
dc.subjectSulfur compoundseng
dc.subjectDensity-functional-theoryeng
dc.subjectElectronic.structureeng
dc.subjectIon batterieseng
dc.subjectIon concentrationseng
dc.subjectIon kineticseng
dc.subjectLithium ionseng
dc.subjectNa-ion batterieseng
dc.subjectPerformanceeng
dc.subjectSodium ionseng
dc.subjectTwo phaseeng
dc.subjectMolybdenum compoundseng
dc.titleMoS2 2D-polymorphs as Li-/Na-ion batteries: 1T' vs 2H phaseseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1016/j.molliq.2023.123904
dc.relation.citationvolume396
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGonzález, J.W., Departamento de Física, Universidad Técnica Federico Santa María, Casilla Postal 110V, Valparaíso, Chile
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesDai, Z., Liu, L., Zhang, Z., Strain engineering of 2D materials: issues and opportunities at the interface (2019) Adv. Mater., 31
dc.relation.referencesZhu, J., Ha, E., Zhao, G., Zhou, Y., Huang, D., Yue, G., Hu, L., Lee, L.Y.S., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption (2017) Coord. Chem. Rev., 352, pp. 306-327
dc.relation.referencesGlavin, N.R., Rao, R., Varshney, V., Bianco, E., Apte, A., Roy, A., Ringe, E., Ajayan, P.M., Emerging applications of elemental 2D materials (2020) Adv. Mater., 32
dc.relation.referencesGjerding, M.N., Taghizadeh, A., Rasmussen, A., Ali, S., Bertoldo, F., Deilmann, T., Knøsgaard, N.R., Manti, S., Recent progress of the computational 2D materials database (C2DB) (2021) 2D Mater., 8
dc.relation.referencesManzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., Kis, A., 2D transition metal dichalcogenides (2017) Nat. Rev. Mater., 2, pp. 1-15
dc.relation.referencesSokolikova, M.S., Mattevi, C., Direct synthesis of metastable phases of 2D transition metal dichalcogenides (2020) Chem. Soc. Rev., 49, pp. 3952-3980
dc.relation.referencesWang, R., Yu, Y., Zhou, S., Li, H., Wong, H., Luo, Z., Gan, L., Zhai, T., Strategies on phase control in transition metal dichalcogenides (2018) Adv. Funct. Mater., 28
dc.relation.referencesYu, Y., Nam, G.-H., He, Q., Wu, X.-J., Zhang, K., Yang, Z., Chen, J., Liu, Z., High phase-purity 1T'-MoS2 and 1T'-MoSe2 layered crystals (2018) Nat. Chem., 10, pp. 638-643
dc.relation.referencesSandoval, S.J., Yang, D., Frindt, R., Irwin, J., Raman study and lattice dynamics of single molecular layers of MoS2 (1991) Phys. Rev. B, 44
dc.relation.referencesHuang, H., Fan, X., Singh, D.J., Zheng, W., First principles study on 2H-1T' transition in MoS2 with copper (2018) Phys. Chem. Chem. Phys., 20, pp. 26986-26994
dc.relation.referencesLin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K., Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 (2014) Nat. Nanotechnol., 9, pp. 391-396
dc.relation.referencesHou, X., Zhang, W., Peng, J., Zhou, L., Wu, J., Xie, K., Fang, Z., Phase transformation of 1T'-MoS2 induced by electrochemical prelithiation for lithium-ion storage (2022) ACS Appl. Energy Mater., 5, pp. 11292-11303
dc.relation.referencesXu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A., Steubing, B., Future material demand for automotive lithium-based batteries (2020) Commun. Mater., 1, p. 99
dc.relation.referencesHajiahmadi, Z., Ghasemi, S.A., Kühne, T.D., Naghavi, S.S., (2023) ACS Appl. Nano Mater., 6, pp. 12862-12870
dc.relation.referencesSun, R., Wei, Q., Li, Q., Luo, W., An, Q., Sheng, J., Wang, D., Mai, L., Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery (2015) ACS Appl. Mater. Interfaces, 7, pp. 20902-20908
dc.relation.referencesDua, H., Deb, J., Paul, D., Sarkar, U., Twin-graphene as a promising anode material for Na-ion rechargeable batteries (2021) ACS Appl. Nano Mater., 4, pp. 4912-4918
dc.relation.referencesDeb, J., Ahuja, R., Sarkar, U., Two-dimensional pentagraphyne as a high-performance anode material for Li/Na-ion rechargeable batteries (2022) ACS Appl. Nano Mater., 5, pp. 10572-10582
dc.relation.referencesLin, L., Lei, W., Zhang, S., Liu, Y., Wallace, G.G., Chen, J., Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries (2019) Energy Storage Mater., 19, pp. 408-423
dc.relation.referencesUpadhyay, S.N., Satrughna, J.A.K., Pakhira, S., Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage (2021) Emerg. Mater., 4, pp. 951-970
dc.relation.referencesStephenson, T., Li, Z., Olsen, B., Mitlin, D., Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites (2014) Energy Environ. Sci., 7, pp. 209-231
dc.relation.referencesBarik, G., Pal, S., Defect induced performance enhancement of monolayer MoS2 for Li- and Na-ion batteries (2019) J. Phys. Chem. C, 123, pp. 21852-21865
dc.relation.referencesHe, X., Wang, R., Yin, H., Zhang, Y., Chen, W., Huang, S., 1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries (2022) Appl. Surf. Sci., 584
dc.relation.referencesHafner, J., Kresse, G., Properties of Complex Inorganic Solids (1997), pp. 69-82. , Springer
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54, pp. 11169-11186
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59, pp. 1758-1775
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J. Chem. Phys., 132
dc.relation.referencesGrimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory (2011) J. Comput. Chem., 32, pp. 1456-1465
dc.relation.referencesTang, W., Sanville, E., Henkelman, G., A grid-based Bader analysis algorithm without lattice bias (2009) J. Phys. Condens. Matter, 21
dc.relation.referencesSanville, E., Kenny, S.D., Smith, R., Henkelman, G., Improved grid-based algorithm for Bader charge allocation (2007) J. Comput. Chem., 28, pp. 899-908
dc.relation.referencesYu, M., Trinkle, D.R., Accurate and efficient algorithm for Bader charge integration (2011) J. Chem. Phys., 134
dc.relation.referencesDe Souza, L., de Castro, G.M., Marques, L., Belchior, J., A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries (2021) J. Mol. Graph. Model., 108
dc.relation.referencesPajtler, M.V., Lukačević, I., Dušić, V., Mužević, M., Lithium adsorption on the interface of graphene/boron nitride nanoribbons (2023) J. Mater. Sci., 58, pp. 4513-4524
dc.relation.referencesAkgenç, B., Two-dimensional black arsenic for Li-ion battery applications: a DFT study (2019) J. Mater. Sci., 54, pp. 9543-9552
dc.relation.referencesLi, Y.-M., Guo, Y.-L., Jiao, Z.-Y., The effect of S-functionalized and vacancies on V2C MXenes as anode materials for Na-ion and Li-ion batteries (2020) Curr. Appl. Phys., 20, pp. 310-319
dc.relation.referencesZhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D., Ceder, G., First-principles prediction of redox potentials in transition-metal compounds with LDA+U (2004) Phys. Rev. B, 70
dc.relation.referencesKim, T., Choi, W., Shin, H.-C., Choi, J.-Y., Kim, J.M., Park, M.-S., Yoon, W.-S., Applications of voltammetry in lithium ion battery research (2020) J. Electrochem. Sci. Technol., 11, pp. 14-25
dc.relation.referencesGonzález, J.W., Vizcaya, S., Morell, E.S., V2C-based lithium batteries: the influence of magnetic phase and Hubbard interaction (2022) Funct. Mater. Lett.
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745
dc.relation.referencesKlimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der Waals density functional (2009) J. Phys. Condens. Matter, 22
dc.relation.referencesChen, K., Deng, J., Yan, Y., Shi, Q., Chang, T., Ding, X., Sun, J., Liu, J.Z., Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices (2021) NPJ Comput. Mater., 7, p. 79
dc.relation.referencesZhao, W., Pan, J., Fang, Y., Che, X., Wang, D., Bu, K., Huang, F., Metastable MoS2: crystal structure, electronic band structure, synthetic approach and intriguing physical properties (2018) Chemistry Eur. J., 24, pp. 15942-15954
dc.relation.referencesXu, W., Yan, S., Qiao, W., Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain (2018) RSC Adv., 8, pp. 8435-8441
dc.relation.referencesUrban, A., Seo, D.-H., Ceder, G., Computational understanding of Li-ion batteries (2016) NPJ Comput. Mater., 2, pp. 1-13
dc.relation.referencesLiu, K., Zhang, B., Chen, X., Huang, Y., Zhang, P., Zhou, D., Du, H., Xiao, B., Modulating the open-circuit voltage of two-dimensional MoB MBene electrode via specific surface chemistry for Na/K ion batteries: a first-principles study (2021) J. Phys. Chem. C, 125, pp. 18098-18107
dc.relation.referencesPersson, K., Hinuma, Y., Meng, Y.S., Van der Ven, A., Ceder, G., Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations (2010) Phys. Rev. B, 82
dc.relation.referencesSukhanova, E.V., Bereznikova, L.A., Manakhov, A.M., Al Qahtani, H.S., Popov, Z.I., A novel membrane-like 2D A'-MoS2 as anode for lithium- and sodium-ion batteries (2022) Membranes, 12, p. 1156
dc.relation.referencesArtacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A., Junquera, J., Martin, R.M., Soler, J.M., The SIESTA method, developments and applicability (2008) J. Phys. Condens. Matter, 20
dc.relation.referencesXiong, H., Slater, M.D., Balasubramanian, M., Johnson, C.S., Rajh, T., Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries (2011) J. Phys. Chem. Lett., 2, pp. 2560-2565
dc.relation.referencesQin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., Sun, Z., MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance (2015) Electrochim. Acta, 153, pp. 55-61
dc.relation.referencesKumar Gudelli, V., Guo, G.-Y., Magnetism and magneto-optical effects in bulk and few-layer CrI3: a theoretical GGA+ U study (2019) New J. Phys., 21
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem