dc.contributor.author | Vaquero D | |
dc.contributor.author | Arroyo-Gascón O | |
dc.contributor.author | Salvador-Sánchez J | |
dc.contributor.author | Alcázar-Ruano P.L | |
dc.contributor.author | Diez E | |
dc.contributor.author | Perez-Rodríguez A | |
dc.contributor.author | Correa J.D | |
dc.contributor.author | Dominguez-Adame F | |
dc.contributor.author | Chico L | |
dc.contributor.author | Quereda J. | |
dc.date.accessioned | 2024-07-31T21:07:03Z | |
dc.date.available | 2024-07-31T21:07:03Z | |
dc.date.created | 2024 | |
dc.identifier.issn | 20531583 | |
dc.identifier.uri | http://hdl.handle.net/11407/8460 | |
dc.description | The low crystal symmetry of rhenium disulphide (ReS2) leads to the emergence of dichroic optical and optoelectronic response, absent in other layered transition metal dichalcogenides, which could be exploited for device applications requiring polarization resolution. To date, spectroscopy studies on the optical response of ReS2 have relied almost exclusively in characterization techniques involving optical detection, such as photoluminescence, absorbance, or reflectance spectroscopy. However, to realize the full potential of this material, it is necessary to develop knowledge on its optoelectronic response with spectral resolution. In this work, we study the polarization-dependent photocurrent spectra of few-layer ReS2 photodetectors, both in room conditions and at cryogenic temperature. Our spectral measurements reveal two main exciton lines at energies matching those reported for optical spectroscopy measurements, as well as their excited states. Moreover, we also observe an additional exciton-like spectral feature with a photoresponse intensity comparable to the two main exciton lines. We attribute this feature, not observed in earlier photoluminescence measurements, to a non-radiative exciton transition. The intensities of the three main exciton features, as well as their excited states, modulate with linear polarization of light, each one acquiring maximal strength at a different polarization angle. We have performed first-principles exciton calculations employing the Bethe-Salpeter formalism, which corroborate our experimental findings. Our results bring new perspectives for the development of ReS2-based nanodevices. © 2023 The Author(s). Published by IOP Publishing Ltd. | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177555049&doi=10.1088%2f2053-1583%2fad0402&partnerID=40&md5=7d49c2cfdef6421e76c11b64456ebb19 | |
dc.source | 2D Materials | |
dc.source | 2D Materials | |
dc.source | Scopus | |
dc.subject | Exciton | eng |
dc.subject | Optoelectronics | eng |
dc.subject | Photocurrent spectroscopy | eng |
dc.subject | Polarization-dependent | eng |
dc.subject | ReS2 | eng |
dc.subject | Crystal symmetry | eng |
dc.subject | Excited states | eng |
dc.subject | Excitons | eng |
dc.subject | Photoluminescence | eng |
dc.subject | Polarization | eng |
dc.subject | Rhenium compounds | eng |
dc.subject | Transition metals | eng |
dc.subject | Device application | eng |
dc.subject | Excited-states | eng |
dc.subject | Exciton lines | eng |
dc.subject | Excitonics | eng |
dc.subject | Layered transition metal dichalcogenides | eng |
dc.subject | Optical response | eng |
dc.subject | Optical- | eng |
dc.subject | Photocurrent spectroscopy | eng |
dc.subject | Polarization-dependent | eng |
dc.subject | Spectral feature | eng |
dc.subject | Sulfur compounds | eng |
dc.title | Polarization-tuneable excitonic spectral features in the optoelectronic response of atomically thin ReS2 | eng |
dc.type | article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1088/2053-1583/ad0402 | |
dc.relation.citationvolume | 11 | |
dc.relation.citationissue | 1 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Vaquero, D., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain | |
dc.affiliation | Arroyo-Gascón, O., Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, E-28049, Spain, Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain | |
dc.affiliation | Salvador-Sánchez, J., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain | |
dc.affiliation | Alcázar-Ruano, P.L., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain | |
dc.affiliation | Diez, E., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain | |
dc.affiliation | Perez-Rodríguez, A., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Dominguez-Adame, F., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain | |
dc.affiliation | Chico, L., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain | |
dc.affiliation | Quereda, J., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain | |
dc.relation.references | Manzeli, S, Ovchinnikov, D, Pasquier, D, Yazyev, O V, Kis, A, 2D transition metal dichalcogenides (2017) Nat. Rev. Mater, 2, pp. 1151-15 | |
dc.relation.references | Splendiani, A, Sun, L, Zhang, Y, Li, T, Kim, J, Chim, C-Y, Galli, G, Wang, F, Emerging photoluminescence in monolayer MoS2 (2010) Nano Lett, 10, pp. 1271-51271. , 5 | |
dc.relation.references | Mak, K F, He, K, Lee, C, Lee, G H, Hone, J, Heinz, T F, Shan, J, Tightly bound trions in monolayer MoS2 (2013) Nat. Mater, 12, pp. 207-11207. , 11 | |
dc.relation.references | Macneill, D, Heikes, C, Mak, K F, Anderson, Z, Kormányos, A, Zólyomi, V, Park, J, Ralph, D C, Breaking of valley degeneracy by magnetic field in monolayer MoSe2 (2015) Phys. Rev. Lett, 114, pp. 1131-13 | |
dc.relation.references | Liu, Y, Gao, Y, Zhang, S, He, J, Yu, J, Liu, Z, Valleytronics in transition metal dichalcogenides materials (2019) Nano Res, 12, pp. 2695-7112695. , 711 | |
dc.relation.references | Chenet, D A, Aslan, B, Huang, P Y, Fan, C, van der Zande, A M, Heinz, T F, Hone, J C, In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy (2015) Nano Lett, 15, pp. 5667-725667. , 72 | |
dc.relation.references | Wang, J, Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2 (2020) Adv. Mater, 32, pp. 171-177 | |
dc.relation.references | Aslan, O B, Chenet, D A, Van Der Zande, A M, Hone, J C, Heinz, T F, Linearly polarized excitons in single- and few-layer ReS2 crystals (2016) ACS Photonics, 3, pp. 96-10196. , 101 | |
dc.relation.references | Lamfers, H J, Meetsma, A, Wiegers, G A, De Boer, J L, The crystal structure of some rhenium and technetium dichalcogenides (1996) J. Alloys Compd, 241, pp. 34-3934. , 39 | |
dc.relation.references | Murray, H H, Kelly, S P, Chianelli, R R, Day, C S, Structure of rhenium disulfide (1994) Inorg. Chem, 33, pp. 4418-204418. , 20 | |
dc.relation.references | Ibáñez-Insa, J, Woźniak, T, Oliva, R, Popescu, C, Hernández, S, López-Vidrier, J, Structural and high-pressure properties of rheniite (ReS2) and (Re,Mo)S2 (2021) Minerals, 11, p. 207 | |
dc.relation.references | Zhou, Y, Stacking-order-driven optical properties and carrier dynamics in ReS2 (2020) Adv. Mater, 32, p. 1908311 | |
dc.relation.references | Zhou, Y, Maity, N, Lin, J F, Singh, A K, Wang, Y, Nonlinear optical absorption of ReS2 driven by stacking order (2021) ACS Photonics, 8, pp. 405-11405. , 11 | |
dc.relation.references | Vaquero, D, Clericò, V, Salvador-Sánchez, J, Martín-Ramos, A, Díaz, E, Domínguez-Adame, F, Meziani, Y M, Quereda, J, Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy (2020) Commun. Phys, 3, p. 194 | |
dc.relation.references | Vaquero, D, Salvador-Sánchez, J, Clericò, V, Diez, E, Quereda, J, The low-temperature photocurrent spectrum of monolayer MoSe2: excitonic features and gate voltage dependence (2022) Nanomaterials, 12, p. 322 | |
dc.relation.references | Wilson, J A, Yoffe, A D, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties (1969) Adv. Phys, 18, pp. 193-335193. , 335 | |
dc.relation.references | Ho, C H, Liu, Z Z, Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy (2019) Nano Energy, 56, pp. 641-50641. , 50 | |
dc.relation.references | Jadczak, J, Kutrowska-Girzycka, J, Smoleński, T, Kossacki, P, Huang, Y S, Bryja, L, Exciton binding energy and hydrogenic Rydberg series in layered ReS2 (2019) Sci. Rep, 9, pp. 191-199 | |
dc.relation.references | Gogna, R, Zhang, L, Deng, H, Self-hybridized, polarized polaritons in ReS2 crystals (2020) ACS Photonics, 7, pp. 3328-323328. , 32 | |
dc.relation.references | Oliva, R, Laurien, M, Dybala, F, Kopaczek, J, Qin, Y, Tongay, S, Rubel, O, Kudrawiec, R, Pressure dependence of direct optical transitions in ReS2 and ReSe2 npj 2D (2019) Mater. Appl, 3, p. 20 | |
dc.relation.references | Dhara, A, Chakrabarty, D, Das, P, Pattanayak, A K, Paul, S, Mukherjee, S, Dhara, S, Additional excitonic features and momentum-dark states in ReS2 (2020) Phys. Rev. B, 102, p. 161404. , (R) | |
dc.relation.references | Ubrig, N, Jo, S, Philippi, M, Costanzo, D, Berger, H, Kuzmenko, A B, Morpurgo, A F, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping (2017) Nano Lett, 17, pp. 5719-255719. , 25 | |
dc.relation.references | Gadde, J R, Two-dimensional ReS2: solution to the unresolved queries on its structure and inter-layer coupling leading to potential optical applications (2021) Phys. Rev. Mater, 5, p. 054006 | |
dc.relation.references | Wang, P, Wang, Y, Qu, J, Zhu, Q, Yang, W, Zhu, J, Wang, L, Zhao, Y, Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide (2018) Phys. Rev. B, 97, p. 235202 | |
dc.relation.references | Ho, C, Huang, Y, Tiong, K, Liao, P C, Absorption-edge anisotropy in ReS2 and ReSe2 layered semiconductors (1998) Phys. Rev. B, 58, p. 16130 | |
dc.relation.references | Echeverry, J P, Gerber, I C, Theoretical investigations of the anisotropic optical properties of distorted 1T ReS2 and ReSe2 monolayers, bilayers, and in the bulk limit (2018) Phys. Rev. B, 97, p. 075123 | |
dc.relation.references | Bravo, S, Correa, J, Chico, L, Pacheco, M, Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep, 8, pp. 1101-1110 | |
dc.relation.references | Mortensen, J J, Hansen, L B, Jacobsen, K W, Real-space grid implementation of the projector augmented wave method (2005) Phys. Rev. B, 71, p. 035109 | |
dc.relation.references | Enkovaara, J, Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method (2010) J. Phys.: Condens. Matter, 22, p. 253202 | |
dc.relation.references | Hjorth Larsen, A, The atomic simulation environment-a Python library for working with atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002 | |
dc.relation.references | Lehtola, S, Steigemann, C, Oliveira, M J T, Marques, M A L, Recent developments in libxc—A comprehensive library of functionals for density functional theory (2018) SoftwareX, 7 (1 5), pp. 1-5 | |
dc.relation.references | Soler, J M, The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, p. 2745 | |
dc.relation.references | García, A, Siesta: recent developments and applications (2020) J. Chem. Phys, 152, p. 204108 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |