Show simple item record

dc.contributor.authorVaquero D
dc.contributor.authorArroyo-Gascón O
dc.contributor.authorSalvador-Sánchez J
dc.contributor.authorAlcázar-Ruano P.L
dc.contributor.authorDiez E
dc.contributor.authorPerez-Rodríguez A
dc.contributor.authorCorrea J.D
dc.contributor.authorDominguez-Adame F
dc.contributor.authorChico L
dc.contributor.authorQuereda J.
dc.date.accessioned2024-07-31T21:07:03Z
dc.date.available2024-07-31T21:07:03Z
dc.date.created2024
dc.identifier.issn20531583
dc.identifier.urihttp://hdl.handle.net/11407/8460
dc.descriptionThe low crystal symmetry of rhenium disulphide (ReS2) leads to the emergence of dichroic optical and optoelectronic response, absent in other layered transition metal dichalcogenides, which could be exploited for device applications requiring polarization resolution. To date, spectroscopy studies on the optical response of ReS2 have relied almost exclusively in characterization techniques involving optical detection, such as photoluminescence, absorbance, or reflectance spectroscopy. However, to realize the full potential of this material, it is necessary to develop knowledge on its optoelectronic response with spectral resolution. In this work, we study the polarization-dependent photocurrent spectra of few-layer ReS2 photodetectors, both in room conditions and at cryogenic temperature. Our spectral measurements reveal two main exciton lines at energies matching those reported for optical spectroscopy measurements, as well as their excited states. Moreover, we also observe an additional exciton-like spectral feature with a photoresponse intensity comparable to the two main exciton lines. We attribute this feature, not observed in earlier photoluminescence measurements, to a non-radiative exciton transition. The intensities of the three main exciton features, as well as their excited states, modulate with linear polarization of light, each one acquiring maximal strength at a different polarization angle. We have performed first-principles exciton calculations employing the Bethe-Salpeter formalism, which corroborate our experimental findings. Our results bring new perspectives for the development of ReS2-based nanodevices. © 2023 The Author(s). Published by IOP Publishing Ltd.
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85177555049&doi=10.1088%2f2053-1583%2fad0402&partnerID=40&md5=7d49c2cfdef6421e76c11b64456ebb19
dc.source2D Materials
dc.source2D Materials
dc.sourceScopus
dc.subjectExcitoneng
dc.subjectOptoelectronicseng
dc.subjectPhotocurrent spectroscopyeng
dc.subjectPolarization-dependenteng
dc.subjectReS2eng
dc.subjectCrystal symmetryeng
dc.subjectExcited stateseng
dc.subjectExcitonseng
dc.subjectPhotoluminescenceeng
dc.subjectPolarizationeng
dc.subjectRhenium compoundseng
dc.subjectTransition metalseng
dc.subjectDevice applicationeng
dc.subjectExcited-stateseng
dc.subjectExciton lineseng
dc.subjectExcitonicseng
dc.subjectLayered transition metal dichalcogenideseng
dc.subjectOptical responseeng
dc.subjectOptical-eng
dc.subjectPhotocurrent spectroscopyeng
dc.subjectPolarization-dependenteng
dc.subjectSpectral featureeng
dc.subjectSulfur compoundseng
dc.titlePolarization-tuneable excitonic spectral features in the optoelectronic response of atomically thin ReS2eng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1088/2053-1583/ad0402
dc.relation.citationvolume11
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationVaquero, D., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain
dc.affiliationArroyo-Gascón, O., Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, E-28049, Spain, Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain
dc.affiliationSalvador-Sánchez, J., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain
dc.affiliationAlcázar-Ruano, P.L., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain
dc.affiliationDiez, E., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain
dc.affiliationPerez-Rodríguez, A., Nanotechnology Group, USAL-Nanolab, Universidad de Salamanca, Salamanca, E-37008, Spain
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationDominguez-Adame, F., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain
dc.affiliationChico, L., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain
dc.affiliationQuereda, J., Departamento de Física de Materiales, GISC, Universidad Complutense de Madrid, Madrid, E-28040, Spain
dc.relation.referencesManzeli, S, Ovchinnikov, D, Pasquier, D, Yazyev, O V, Kis, A, 2D transition metal dichalcogenides (2017) Nat. Rev. Mater, 2, pp. 1151-15
dc.relation.referencesSplendiani, A, Sun, L, Zhang, Y, Li, T, Kim, J, Chim, C-Y, Galli, G, Wang, F, Emerging photoluminescence in monolayer MoS2 (2010) Nano Lett, 10, pp. 1271-51271. , 5
dc.relation.referencesMak, K F, He, K, Lee, C, Lee, G H, Hone, J, Heinz, T F, Shan, J, Tightly bound trions in monolayer MoS2 (2013) Nat. Mater, 12, pp. 207-11207. , 11
dc.relation.referencesMacneill, D, Heikes, C, Mak, K F, Anderson, Z, Kormányos, A, Zólyomi, V, Park, J, Ralph, D C, Breaking of valley degeneracy by magnetic field in monolayer MoSe2 (2015) Phys. Rev. Lett, 114, pp. 1131-13
dc.relation.referencesLiu, Y, Gao, Y, Zhang, S, He, J, Yu, J, Liu, Z, Valleytronics in transition metal dichalcogenides materials (2019) Nano Res, 12, pp. 2695-7112695. , 711
dc.relation.referencesChenet, D A, Aslan, B, Huang, P Y, Fan, C, van der Zande, A M, Heinz, T F, Hone, J C, In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy (2015) Nano Lett, 15, pp. 5667-725667. , 72
dc.relation.referencesWang, J, Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2 (2020) Adv. Mater, 32, pp. 171-177
dc.relation.referencesAslan, O B, Chenet, D A, Van Der Zande, A M, Hone, J C, Heinz, T F, Linearly polarized excitons in single- and few-layer ReS2 crystals (2016) ACS Photonics, 3, pp. 96-10196. , 101
dc.relation.referencesLamfers, H J, Meetsma, A, Wiegers, G A, De Boer, J L, The crystal structure of some rhenium and technetium dichalcogenides (1996) J. Alloys Compd, 241, pp. 34-3934. , 39
dc.relation.referencesMurray, H H, Kelly, S P, Chianelli, R R, Day, C S, Structure of rhenium disulfide (1994) Inorg. Chem, 33, pp. 4418-204418. , 20
dc.relation.referencesIbáñez-Insa, J, Woźniak, T, Oliva, R, Popescu, C, Hernández, S, López-Vidrier, J, Structural and high-pressure properties of rheniite (ReS2) and (Re,Mo)S2 (2021) Minerals, 11, p. 207
dc.relation.referencesZhou, Y, Stacking-order-driven optical properties and carrier dynamics in ReS2 (2020) Adv. Mater, 32, p. 1908311
dc.relation.referencesZhou, Y, Maity, N, Lin, J F, Singh, A K, Wang, Y, Nonlinear optical absorption of ReS2 driven by stacking order (2021) ACS Photonics, 8, pp. 405-11405. , 11
dc.relation.referencesVaquero, D, Clericò, V, Salvador-Sánchez, J, Martín-Ramos, A, Díaz, E, Domínguez-Adame, F, Meziani, Y M, Quereda, J, Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy (2020) Commun. Phys, 3, p. 194
dc.relation.referencesVaquero, D, Salvador-Sánchez, J, Clericò, V, Diez, E, Quereda, J, The low-temperature photocurrent spectrum of monolayer MoSe2: excitonic features and gate voltage dependence (2022) Nanomaterials, 12, p. 322
dc.relation.referencesWilson, J A, Yoffe, A D, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties (1969) Adv. Phys, 18, pp. 193-335193. , 335
dc.relation.referencesHo, C H, Liu, Z Z, Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy (2019) Nano Energy, 56, pp. 641-50641. , 50
dc.relation.referencesJadczak, J, Kutrowska-Girzycka, J, Smoleński, T, Kossacki, P, Huang, Y S, Bryja, L, Exciton binding energy and hydrogenic Rydberg series in layered ReS2 (2019) Sci. Rep, 9, pp. 191-199
dc.relation.referencesGogna, R, Zhang, L, Deng, H, Self-hybridized, polarized polaritons in ReS2 crystals (2020) ACS Photonics, 7, pp. 3328-323328. , 32
dc.relation.referencesOliva, R, Laurien, M, Dybala, F, Kopaczek, J, Qin, Y, Tongay, S, Rubel, O, Kudrawiec, R, Pressure dependence of direct optical transitions in ReS2 and ReSe2 npj 2D (2019) Mater. Appl, 3, p. 20
dc.relation.referencesDhara, A, Chakrabarty, D, Das, P, Pattanayak, A K, Paul, S, Mukherjee, S, Dhara, S, Additional excitonic features and momentum-dark states in ReS2 (2020) Phys. Rev. B, 102, p. 161404. , (R)
dc.relation.referencesUbrig, N, Jo, S, Philippi, M, Costanzo, D, Berger, H, Kuzmenko, A B, Morpurgo, A F, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping (2017) Nano Lett, 17, pp. 5719-255719. , 25
dc.relation.referencesGadde, J R, Two-dimensional ReS2: solution to the unresolved queries on its structure and inter-layer coupling leading to potential optical applications (2021) Phys. Rev. Mater, 5, p. 054006
dc.relation.referencesWang, P, Wang, Y, Qu, J, Zhu, Q, Yang, W, Zhu, J, Wang, L, Zhao, Y, Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide (2018) Phys. Rev. B, 97, p. 235202
dc.relation.referencesHo, C, Huang, Y, Tiong, K, Liao, P C, Absorption-edge anisotropy in ReS2 and ReSe2 layered semiconductors (1998) Phys. Rev. B, 58, p. 16130
dc.relation.referencesEcheverry, J P, Gerber, I C, Theoretical investigations of the anisotropic optical properties of distorted 1T ReS2 and ReSe2 monolayers, bilayers, and in the bulk limit (2018) Phys. Rev. B, 97, p. 075123
dc.relation.referencesBravo, S, Correa, J, Chico, L, Pacheco, M, Tight-binding model for opto-electronic properties of penta-graphene nanostructures (2018) Sci. Rep, 8, pp. 1101-1110
dc.relation.referencesMortensen, J J, Hansen, L B, Jacobsen, K W, Real-space grid implementation of the projector augmented wave method (2005) Phys. Rev. B, 71, p. 035109
dc.relation.referencesEnkovaara, J, Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method (2010) J. Phys.: Condens. Matter, 22, p. 253202
dc.relation.referencesHjorth Larsen, A, The atomic simulation environment-a Python library for working with atoms (2017) J. Phys.: Condens. Matter, 29, p. 273002
dc.relation.referencesLehtola, S, Steigemann, C, Oliveira, M J T, Marques, M A L, Recent developments in libxc—A comprehensive library of functionals for density functional theory (2018) SoftwareX, 7 (1 5), pp. 1-5
dc.relation.referencesSoler, J M, The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, p. 2745
dc.relation.referencesGarcía, A, Siesta: recent developments and applications (2020) J. Chem. Phys, 152, p. 204108
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record