Show simple item record

dc.contributor.authorSerna-Carrizales J.C
dc.contributor.authorZárate Guzmán A.I
dc.contributor.authorForgionny A
dc.contributor.authorAcelas N
dc.contributor.authorPérez S
dc.contributor.authorMuñoz-Saldaña J
dc.contributor.authorOcampo-Perez R.
dc.date.accessioned2024-07-31T21:07:03Z
dc.date.available2024-07-31T21:07:03Z
dc.date.created2024
dc.identifier.issn139351
dc.identifier.urihttp://hdl.handle.net/11407/8461
dc.descriptionTequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles. © 2024 Elsevier Inc.
dc.language.isoeng
dc.publisherAcademic Press Inc.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85186271268&doi=10.1016%2fj.envres.2024.118559&partnerID=40&md5=fc8294f6cf1ae99d81960b83203c9f4b
dc.sourceEnvironmental Research
dc.sourceEnviron. Res.
dc.sourceScopus
dc.subjectAdsorptioneng
dc.subjectAdvanced oxidation processeng
dc.subjectAgave residueseng
dc.subjectFenton processeng
dc.subjectSulfamethazineeng
dc.subjectActivated carboneng
dc.subjectCelluloseeng
dc.subjectMagnetiteeng
dc.subjectOxidationeng
dc.subjectPhysicochemical propertieseng
dc.subjectPotassium compoundseng
dc.subjectSilver compoundseng
dc.subjectAdvanced Oxidation Processeseng
dc.subjectAgave bagasseeng
dc.subjectAgave residueeng
dc.subjectCellulose contenteng
dc.subjectCrystallographic phaseeng
dc.subjectEffective removalseng
dc.subjectFenton's processeng
dc.subjectLignin contentseng
dc.subjectMe-xicoeng
dc.subjectSulfamethazineeng
dc.subjectAdsorptioneng
dc.titleProduction of activated carbon from agave residues and its synergistic application in a hybrid adsorption-AOPs system for effective removal of sulfamethazine from aqueous solutionseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1016/j.envres.2024.118559
dc.relation.citationvolume250
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationSerna-Carrizales, J.C., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationZárate Guzmán, A.I., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico, Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan, 45129, Mexico
dc.affiliationForgionny, A., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.affiliationPérez, S., Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc, Real de Juriquilla, Querétaro, 76230, Mexico
dc.affiliationMuñoz-Saldaña, J., Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc, Real de Juriquilla, Querétaro, 76230, Mexico
dc.affiliationOcampo-Perez, R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.relation.referencesBedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J.J., Belver, C., Review on Activated Carbons by Chemical Activation with FeCl3. C (2020), p. 21. , 6(2
dc.relation.referencesCalderón-Soto, L.F., López-Gutiérrez, I., Valencia-Ojeda, C., Aguilar-López, R., Alatriste-Mondragón, F., Femat, R., Two-stage continuous biomethane production from enzymatic hydrolysate of agave bagasse: Modelling, identification and control (2022) J. Process Control, 120, pp. 14-27
dc.relation.referencesCasiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Ferrari, A.C., Raman spectroscopy of graphene edges (2009) Nano Lett., 9 (4), pp. 1433-1441
dc.relation.referencesCaturla, F., Molina-Sabio, M., Rodríguez-Reinoso, F., Preparation of activated carbon by chemical activation with ZnCl2 (1991) Carbon, 29 (7), pp. 999-1007
dc.relation.referencesChen, X., Wang, X., Fang, D., A review on C1s XPS-spectra for some kinds of carbon materials (2020) Fullerenes, Nanotub. Carbon Nanostruct., 28 (12), pp. 1048-1058
dc.relation.referencesFan, J., Liu, J., Cai, Y., Liu, Z., Wu, D., Efficient degradation of tetracycline in FeS-based SR-AOPs process at basic pHs: the overlooked role of metal complexation and redox reaction in persulfate activation (2023) Chem. eng. J., 466
dc.relation.referencesFaria, P.C.C., Órfão, J.J.M., Pereira, M.F.R., Adsorption of Anionic and Cationic Dyes on Activated Carbons with Different Surface Chemistries Elsevier BV (2004)
dc.relation.referencesFlores-Méndez, D.A., Pelayo-Ortiz, C., Gómez, M., de Jesús, Á., Toriz, G., Guatemala-Morales, G.M., Corona-González, R.I., Evaluation of agave tequilana by-products for microbial production of hyaluronic acid (2023) Bioresour. Technol. Rep., 21
dc.relation.referencesFu, C., Yi, X., Liu, Y., Zhou, H., Cu2+ activated persulfate for sulfamethazine degradation (2020) Chemosphere, 257
dc.relation.referencesGuo, W., Geng, C., Sun, Z., Jiang, J., Ju, Z., Microstructure-controlled amorphous carbon anode via pre-oxidation engineering for superior potassium-ion storage (2022) J. Colloid Interface Sci., 623, pp. 1075-1084
dc.relation.referencesHai, N.H., Phu, N.D., Luong, N.H., Chau, N., Chinh, H.D., Hoang, L.H., Leslie-Pelecky, D.L., Mechanism for sustainable magnetic nanoparticles under ambient conditions (2008) J. Kor. Phys. Soc., 52 (5), pp. 1327-1331
dc.relation.referencesHe, Z., Xu, X., Wang, B., Lu, Z., Shi, D., Wu, W., Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline (2022) J. Environ. Manag., 322
dc.relation.referencesHu, Z., Srinivasan, M.P., Ni, Y., Novel activation process for preparing highly microporous and mesoporous activated carbons (2001) Carbon, 39 (6), pp. 877-886
dc.relation.referencesJiménez-Rodríguez, A., Heredia-Olea, E., Barba-Dávila, B.A., Gutiérrez-Uribe, J.A., Antunes-Ricardo, M., Polysaccharides from agave salmiana bagasse improves the storage stability and the cellular uptake of indomethacin nanoemulsions (2021) Food Bioprod. Process., 127, pp. 114-127
dc.relation.referencesKarim, A.V., Jiao, Y., Zhou, M., Nidheesh, P.V., Iron-based persulfate activation process for environmental decontamination in water and soil (2021) Chemosphere, 265
dc.relation.referencesKhenniche, L., Chemache, Z., Saidou-Souleymane, M., Aissani-Benissad, F., Elimination of antibiotics by adsorption on ferromagnetic carbon from aqueous media: regeneration of the spent carbon (2022) Int. J. Environ. Sci. Technol., 19 (10), pp. 9571-9586
dc.relation.referencesKumari, P., Samadder, S.R., Valorization of carbonaceous waste into graphene materials and their potential application in water & wastewater treatment: a review (2022) Mater. Today Chem., 26
dc.relation.referencesLi, H., Fu, Y., Wang, M., Dong, L., Liu, N., Comparison study on FeS-activated peroxymonosulfate, persulfate, and hydrogen peroxide for allura red AC decoloration (2023) Environ. eng. Sci., 40 (10), pp. 449-459
dc.relation.referencesLuo, H., Fu, H., Yin, H., Lin, Q., Carbon materials in persulfate-based advanced oxidation processes: the roles and construction of active sites (2022) J. Hazard Mater., 426
dc.relation.referencesLuo, H., Zeng, Y., He, D., Pan, X., Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: a review (2021) Chem. eng. J., 407
dc.relation.referencesMahdi Ahmed, M., Barbati, S., Doumenq, P., Chiron, S., Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination (2012) Chem. eng. J., 197, pp. 440-447
dc.relation.referencesNieto-Delgado, C., Rangel-Mendez, J.R., In situ transformation of agave bagasse into activated carbon by use of an environmental scanning electron microscope (2013) Microporous Mesoporous Mater., 167, pp. 249-253
dc.relation.referencesParedes-Laverde, M., Porras, J., Acelas, N., Romero-Hernández, J.J., Jojoa-Sierra, S.D., Huerta, L., Torres-Palma, R.A., Rice Husk–Based Pyrogenic Carbonaceous Material Efficiently Promoted Peroxymonosulfate Activation toward the Non-radical Pathway for the Degradation of Pharmaceuticals in Water (2023), Springer Science and Business Media LLC
dc.relation.referencesRajan, A., Sharma, M., Sahu, N.K., Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia (2020), Springer Science and Business Media LLC
dc.relation.referencesRamos, B., Ferreira, L.B., Palharim, P.H., Metolina, P., Gusmão, C.D.A., Teixeira, A.C.S.C., A continuous photo-fenton-like process using persulfate salts for the degradation of acetaminophen under solar irradiation at circumneutral pH (2023) Chemical engineering Journal Advances, 14
dc.relation.referencesSeliem, M.K., Barczak, M., Anastopoulos, I., Giannakoudakis, D.A., A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes: kinetics and equilibrium studies (2020) Nanomaterials, 10 (4), p. 684
dc.relation.referencesSeong, H.J., Boehman, A.L., Evaluation of Raman parameters using visible Raman microscopy for soot oxidative reactivity (2013) Energy & Fuels, 27 (3), pp. 1613-1624
dc.relation.referencesSun, Y., Zhou, P., Zhang, P., Meng, S., Zhou, C., Liu, Y., Lai, B., New insight into carbon materials enhanced fenton oxidation: a strategy for green iron(III)/iron(II) cycles (2022) Chem. eng. J., 450
dc.relation.referencesThabet, R.H., Fouad, M.K., Ali, I.A., El Sherbiney, S.A., Tony, M.A., Magnetite-based nanoparticles as an efficient hybrid heterogeneous adsorption/oxidation process for reactive textile dye removal from wastewater matrix (2023) Int. J. Environ. Anal. Chem., 103 (11), pp. 2636-2658
dc.relation.referencesUbando, A.T., Chen, W., Ong, H.C., Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions (2019) Energy, 180, pp. 968-977
dc.relation.referencesWan, Z., Wang, J., Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as fenton-like catalyst (2017) J. Hazard Mater., 324, pp. 653-664
dc.relation.referencesWang, X., Zhang, X., Zhang, Y., Wang, Y., Sun, S., Wu, W.D., Wu, Z., Nanostructured semiconductor supported iron catalysts for heterogeneous photo-fenton oxidation: a review (2020) Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8 (31), pp. 15513-15546
dc.relation.referencesWu, C., Guo, T., Chen, Y., Tian, Q., Zhang, Y., Huang, Z., Gan, T., Facile synthesis of excellent Fe3O4@starch-derived carbon photo-fenton catalyst for tetracycline degradation: rapid Fe3+/Fe2+ circulation under visible light condition (2024) Separ. Purif. Technol., 329
dc.relation.referencesXiao, P., An, L., Wu, D., The use of carbon materials in persulfate-based advanced oxidation processes: a review (2020) N. Carbon Mater., 35 (6), pp. 667-683
dc.relation.referencesZhang, C., Tian, S., Qin, F., Yu, Y., Huang, D., Duan, A., Luo, H., Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: experiments and theoretical calculation (2021) Water Res., 194
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record