Show simple item record

dc.contributor.authorSalazar-Gámez L
dc.contributor.authorLuna-Delrisco M
dc.contributor.authorNarváez-Jojoa E
dc.contributor.authorSalazar-Cano R
dc.contributor.authorRosales-Delgado D
dc.contributor.authorPinchao D
dc.contributor.authorSantander-Yela E.I
dc.contributor.authorCortez-Lopera J.D
dc.contributor.authorCalderón-Estrada L.M
dc.contributor.authorEnríquez-Apraez G.M
dc.contributor.authorRevelo M.C.-B
dc.contributor.authorDelgado-Garcés S
dc.contributor.authorRocha-Meneses L.
dc.date.accessioned2024-07-31T21:07:08Z
dc.date.available2024-07-31T21:07:08Z
dc.date.created2024
dc.identifier.issn26766957
dc.identifier.urihttp://hdl.handle.net/11407/8479
dc.descriptionDespite the recognized efficiency of natural coagulants, their widespread adoption in the water treatment industry remains low. Our study evaluates the effectiveness of three natural coagulants—Moringa Oleifera, Yausa (Abutilon Insigne Planch), and Breadfruit (Artocarpus Altilis)—in reducing water turbidity levels of 40–50 NTU. Among these, two are native plant species potentially applicable in rural Colombian areas, where there are evident disparities in water infrastructure. This research contributes to the development of these coagulants, exploring their integration with existing water treatment methods, determining their optimal concentrations, and efficiencies in turbidity removal. Our findings reveal significant turbidity removal efficiencies: 88.9% for Moringa Oleifera, 83.3% for Yausa, and 67.2% for Breadfruit. These results indicate the feasibility of these agents as sustainable replacements for traditional chemical coagulants, exhibiting a level of effectiveness alike to that observed in Moringa Oleifera. However, challenges in practical implementation and sustainability, covering technical, environmental, economic, and social aspects, are notable obstacles. The aim of this study is to not only demonstrate the effectiveness of these natural coagulants but also to encourage their broader acceptance and integration into sustainable water treatment practices incorporating two unstudied plant species, such as Yausa and Breadfruit, furthering research to overcome existing challenges. © 2024 by the authors.
dc.language.isoeng
dc.publisherSalehan Institute of Higher Education
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85187880072&doi=10.28991%2fCEJ-2024-010-02-020&partnerID=40&md5=2bab9ec3b478ad818bac4a9f926bf05c
dc.sourceCivil engineering Journal (Iran)
dc.sourceCiv. eng. j.
dc.sourceScopus
dc.subjectColor removaleng
dc.subjectMoringa oleiferaeng
dc.subjectNatural coagulantseng
dc.subjectSustainabilityeng
dc.subjectTurbidity removaleng
dc.subjectWater treatmenteng
dc.subjectYausaeng
dc.titleTurbidity Removal Performance of Selected Natural Coagulants for Water Treatment in Colombian Rural Areaseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería en Energíaspa
dc.type.spaArtículo
dc.identifier.doi10.28991/CEJ-2024-010-02-020
dc.relation.citationvolume10
dc.relation.citationissue2
dc.relation.citationstartpage655
dc.relation.citationendpage667
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationSalazar-Gámez, L., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationLuna-Delrisco, M., Energy engineering Program, Faculty of engineering, Medellin University, Antioquia, Medellin, Colombia
dc.affiliationNarváez-Jojoa, E., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationSalazar-Cano, R., Civil engineering Program, Faculty of engineering, Nariño University, Nariño, Pasto, Colombia
dc.affiliationRosales-Delgado, D., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationPinchao, D., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationSantander-Yela, E.I., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationCortez-Lopera, J.D., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationCalderón-Estrada, L.M., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationEnríquez-Apraez, G.M., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationRevelo, M.C.-B., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationDelgado-Garcés, S., Civil engineering Program, Faculty of engineering, Mariana University, Nariño, Pasto, Colombia
dc.affiliationRocha-Meneses, L., Institute of Forestry and engineering, Estonian University of Life Sciences, Estonia
dc.relation.referencesSalem, H. S., Pudza, M. Y., Yihdego, Y., Water strategies and water–food Nexus: challenges and opportunities towards sustainable development in various regions of the World (2022) Sustainable Water Resources Management, 8 (4), p. 114
dc.relation.referencesBoretti, A., Rosa, L., Reassessing the projections of the World Water Development Report (2019) NPJ Clean Water, 2 (1), p. 15
dc.relation.referencesMishra, R. K., Fresh Water availability and Its Global challenge (2023) British Journal of Multidisciplinary and Advanced Studies, 4 (3), pp. 1-78
dc.relation.referencesDurán-Sandoval, D., Durán-Romero, G., Uleri, F., How Much Food Loss and Waste Do Countries with Problems with Food Security Generate? (2023) Agriculture, 13 (5), p. 966
dc.relation.referencesMac Mahon, J., Water purity and sustainable water treatment systems for developing countries (2022) Water and Climate Change, pp. 115-144. , Elsevier, Amsterdam, Netherlands
dc.relation.referencesSalehi, M., Global water shortage and potable water safety
dc.relation.referencesToday’s concern and tomorrow’s crisis (2022) Environment International, 158, p. 106936
dc.relation.referencesDadebo, D., Obura, D., Kimera, D., Hydraulic modeling and prediction of performance for a drinking water supply system towards the achievement of sustainable development goals (SDGs): A system case study from Uganda (2023) Groundwater for Sustainable Development, 22, p. 100951
dc.relation.referencesKoul, B., Bhat, N., Abubakar, M., Mishra, M., Arukha, A. P., Yadav, D., Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals (2022) Water, 14 (22), p. 3751
dc.relation.referencesKarnena, M. K., Konni, M., Dwarapureddi, B. K., Saritha, V., Blend of natural coagulants as a sustainable solution for challenges of pollution from aquaculture wastewater (2022) Applied Water Science, 12 (3), p. 47
dc.relation.referencesRodríguez, C., García, B., Pinto, C., Sánchez, R., Serrano, J., Leiva, E., Water Context in Latin America and the Caribbean: Distribution, Regulations and Prospects for Water Reuse and Reclamation (2022) Water, 14 (21), p. 3589
dc.relation.referencesDuque, J. C., García, G. A., Lozano‐ Gracia, N., Quiñones, M., Montoya, K. Y., Inequality and space in a highly unequal country: What does the literature tell us in the context of Colombia? (2023) Regional Science Policy & Practice, 15 (9), pp. 2065-2086
dc.relation.referencesIrannezhad, M., Ahmadi, B., Liu, J., Chen, D., Matthews, J. H., Global water security: A shining star in the dark sky of achieving the sustainable development goals (2022) Sustainable Horizons, 1, p. 100005
dc.relation.referencesKrupińska, I., Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health (2020) Molecules, 25 (3), p. 641
dc.relation.referencesAng, W. L., Mohammad, A. W., State of the art and sustainability of natural coagulants in water and wastewater treatment (2020) Journal of Cleaner Production, 262, p. 121267
dc.relation.referencesQuezada-Moreno, W. F., Quezada-Torres, W. D., Gallardo-Aguilar, I., Proaño-Molina, M., Cevallos-Carvajal, E., Bravo-Zambonino, J., Trávez-Castellano, A., Natural clarification of cane juice: Technology and quality of hydrolyzed honey (2020) Afinidad, 77 (590)
dc.relation.referencesQuijano, J., Arango, G. J., The breadfruit from colombia-a detailed chemical analysis (1979) Economic Botany, 33 (2), pp. 199-202
dc.relation.referencesVillabona-Ortíz, Á., Tejada-Tovar, C., Ortega-Toro, R., Dager, N. L., Anibal, M. M., Natural coagulation as an alternative to raw water treatment (2022) Journal of Water and Land Development, pp. 21-26
dc.relation.referencesVargas, M. A., Armas, A. S., Valencia, Z. L., Benites-Alfaro, E., Safety in Wastewater Treatment Plants and the use of Natural Coagulants as an Alternative for Turbidity (2022) Chemical engineering Transactions, 91, pp. 301-306
dc.relation.referencesBahrodin, M. B., Zaidi, N. S., Hussein, N., Sillanpää, M., Prasetyo, D. D., Syafiuddin, A., Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant (2021) Current Pollution Reports, 7 (3), pp. 379-391
dc.relation.referencesJagaba, A. H., Kutty, S. R. M., Hayder, G., Latiff, A. A. A., Aziz, N. A. A., Umaru, I., Ghaleb, A. A. S., Nasara, M. A., Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis (2020) Ain Shams engineering Journal, 11 (4), pp. 951-960
dc.relation.referencesNath, A., Mishra, A., Pande, P. P., A review natural polymeric coagulants in wastewater treatment (2021) Materials Today: Proceedings, 46, pp. 6113-6117
dc.relation.referencesSun, Y., Zhou, S., Chiang, P.-C., Shah, K. J., Evaluation and optimization of enhanced coagulation process: Water and energy nexus (2019) Water-Energy Nexus, 2 (1), pp. 25-36
dc.relation.referencesCui, H., Huang, X., Yu, Z., Chen, P., Cao, X., Application progress of enhanced coagulation in water treatment (2020) RSC Advances, 10 (34), pp. 20231-20244
dc.relation.referencesLiu, Z., Wei, H., Li, A., Yang, H., Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization (2019) Journal of Environmental Management, 233, pp. 739-747
dc.relation.referencesLi, Z.-H., Yuan, L., Gao, S.-X., Wang, L., Sheng, G.-P., Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process (2019) Water Research, 159, pp. 145-152
dc.relation.referencesAly, S. A., Anderson, W. B., Huck, P. M., In-line coagulation assessment for ultrafiltration fouling reduction to treat secondary effluent for water reuse (2020) Water Science and Technology, 83 (2), pp. 284-296
dc.relation.referencesZafisah, N. S., Ang, W. L., Mohammad, A. W., Hilal, N., Johnson, D. J., Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water (2020) Journal of Water Process engineering, 33, p. 101028
dc.relation.referencesBouchareb, R., Derbal, K., Özay, Y., Bilici, Z., Dizge, N., Combined natural / chemical coagulation and membrane filtration for wood processing wastewater treatment (2020) Journal of Water Process engineering, 37, p. 101521
dc.relation.referencesMalkoske, T. A., Bérubé, P. R., Andrews, R. C., Coagulation/flocculation prior to low pressure membranes in drinking water treatment: a review (2020) Environmental Science: Water Research & Technology, 6 (11), pp. 2993-3023
dc.relation.referencesAhmed, S. F., Mehejabin, F., Momtahin, A., Tasannum, N., Faria, N. T., Mofijur, M., Hoang, A. T., Mahlia, T. M. I., Strategies to improve membrane performance in wastewater treatment (2022) Chemosphere, 306, p. 135527
dc.relation.referencesAlenazi, M., Hashim, K. S., Hassan, A. A., Muradov, M., Kot, P., Abdulhadi, B., Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach (2020) IOP Conference Series: Materials Science and engineering, 888 (1), p. 12064
dc.relation.referencesAng, W. L., Mohammad, A. W., State of the art and sustainability of natural coagulants in water and wastewater treatment (2020) Journal of Cleaner production, 262, p. 121267
dc.relation.referencesHadadi, A., Imessaoudene, A., Bollinger, J.-C., Assadi, A. A., Amrane, A., Mouni, L., Comparison of Four Plant-Based Bio-Coagulants Performances against Alum and Ferric Chloride in the Turbidity Improvement of Bentonite Synthetic Water (2022) Water, 14 (20), p. 3324
dc.relation.referencesAl-Jadabi, N., Laaouan, M., El Hajjaji, S., Mabrouki, J., Benbouzid, M., Dhiba, D., The Dual Performance of Moringa Oleifera Seeds as Eco-Friendly Natural Coagulant and as an Antimicrobial for Wastewater Treatment: A Review (2023) Sustainability, 15 (5), p. 4280
dc.relation.referencesQuezada Moreno, W., Cevallos Carvajal, E., Yomara Proaño, M., Medina Litardo, R., Mariela Proaño, P., Quezada Torres, W., Caicedo Álvarez, M., Muñoz López, C., Thickening capacity of Cordia lutea Lam mucilage gum in a liquid soap formulation (2023) Afinidad. Journal of Chemical engineering Theoretical and Applied Chemistry, 80 (599), pp. 133-141
dc.relation.referencesPeña-Guzmán, C., Ortiz-Gutierrez, B. E., Evaluation of Three Natural Coagulant from Moringa Oleifera Seed for the Treatment of Synthetic Greywater (2022) Civil engineering Journal, 8 (12), pp. 3842-3853
dc.relation.referencesGarcés, S. D., Revelo, M. C. B., Plata, L. G., Evaluation of Yausa as a Natural Coagulant in the treatment of waters for human consumption (2019) Boletin Informativo CEI, 6 (2), pp. 104-109
dc.relation.referencesRompegading, A. B., Hamza, Arafah, M., Akbar, H., Tolinggi, S., Yani, A., Nur, M., Irfandi, R., The Use of Moringa Seed (Moringa oleifera) Extract as a Natural Coagulant to Reduce the Turbidity Level of Worongnge Village River Water (2023) International Journal of Design & Nature and Ecodynamics, 18 (1), pp. 169-174
dc.relation.referencesTaiwo, A. S., Adenike, K., Aderonke, O., Efficacy of a natural coagulant protein from Moringa oleifera (Lam) seeds in treatment of Opa reservoir water, Ile-Ife, Nigeria (2020) Heliyon, 6 (1), p. e03335
dc.relation.referencesZhao, Q., Huang, A., Wu, G., Guo, Q., Li, M., Wang, X., Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers (2022) Food Research International, 159, p. 111598
dc.relation.referencesMótyán, J., Tóth, F., Tőzsér, J., Research Applications of Proteolytic Enzymes in Molecular Biology (2013) Biomolecules, 3 (4), pp. 923-942
dc.relation.referencesParmar, N., Singh, A., Ward, O. P., Enzyme treatment to reduce solids and improve settling of sewage sludge (2001) Journal of Industrial Microbiology and Biotechnology, 26 (6), pp. 383-386
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record