Mostrar el registro sencillo del ítem

dc.contributor.authorFlórez E
dc.contributor.authorJimenez-Orozco C
dc.contributor.authorAcelas N.
dc.date.accessioned2024-07-31T21:07:08Z
dc.date.available2024-07-31T21:07:08Z
dc.date.created2024
dc.identifier.issn23524928
dc.identifier.urihttp://hdl.handle.net/11407/8481
dc.descriptionTheoretical analyses were explored for the adsorption of heavy metals in aqueous systems, focusing on the influence of surface charge and functional groups of carbonaceous materials. The approach involved the meticulous assignment and interpretation of active adsorption bands, achieved through modelling of Fourier Transform Infrared (FT-IR) and X-ray Photoelectron Spectroscopy (XPS) spectra. Additionally, atomic charges were analyzed, utilizing their chemical properties to glean valuable insights into the atomic-level intricacies of the adsorption process. The structural parameters of the carbonaceous surface reveal that in unsaturated models, heavy metals preferentially adsorb onto neighboring carbons due to facilitated electron transfer. Conversely, adsorption predominantly occurs in saturated models within functional groups, except for interactions involving the phenolic group, where it occurs on the carbonaceous matrix. Overall, negative ΔG values were observed across a range of temperatures from 285 to 315 K, as evidenced by Gibbs free energy values ranging from −72.93 kcal/mol (Ni2+ on carboxylate) to −4.98 kcal/mol (Cd2+ on ketone), confirming the spontaneous and thermodynamic feasibility nature of the adsorption processes for heavy metals on biochar across all evaluated functional groups, following the trend Ni2+ > Zn2+ > Co2+ > Cd2+. These trends can be rationalized in terms of: a) the size-dependence, where smaller cations such as Ni2+ (0.69 Å) form more stable adsorption complexes than Cd2+ (0.95 Å); b) charge transfer, higher adsorption energy (-55.60 kcal/mol) corresponds to a greater magnitude of charge transfer (0.32e); and c) the electronegativity of the respective metals, which are as follows: 1.367 for Ni2+, 1.349 for Co2+ and 1.336 for Zn2+. Consequently, Ni2+ exhibits a greater propensity to accept electrons from oxygen biochar than Co2+ and Zn2+ atoms. Finally, the assignment of IR and XPS is challenging in the laboratory, facing several endeavours. Our findings indicate a notable shift in the C―O stretching signal from 1631 cm−1 (in the clean system) to 1652 cm−1 upon Cd2+ adsorption, with Co2+, Ni2+, and Zn2+ showing shifts to 1690 cm−1 and 1685 cm−1 for the latter two cases, respectively. Therefore, the theoretical signals reported in the current work are a helpful tool as benchmark data to address and complement further experimental information. Indeed, the modelling of IR and XPS fit with some experimental values for some representative cases, implying appropriate modelling of the above systems. © 2024 Elsevier Ltd
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85188100327&doi=10.1016%2fj.mtcomm.2024.108647&partnerID=40&md5=6380f91f7a0e8dc2ad9a9045c411689a
dc.sourceMaterials Today Communications
dc.sourceMater. Today Commun.
dc.sourceScopus
dc.subjectAdsorptioneng
dc.subjectBiochareng
dc.subjectDFTeng
dc.subjectFTIReng
dc.subjectHeavy metalseng
dc.subjectModelingeng
dc.subjectXPSeng
dc.subjectAdsorptioneng
dc.subjectAtomic force microscopyeng
dc.subjectAtomseng
dc.subjectCarboxylationeng
dc.subjectCharge transfereng
dc.subjectChemical bondseng
dc.subjectDensity functional theoryeng
dc.subjectElectronegativityeng
dc.subjectFree energyeng
dc.subjectGibbs free energyeng
dc.subjectHeavy metalseng
dc.subjectKetoneseng
dc.subjectSurface chargeeng
dc.subjectX ray photoelectron spectroscopyeng
dc.subjectAdsorption processeng
dc.subjectBiochareng
dc.subjectCarbonaceous materialseng
dc.subjectDFTeng
dc.subjectFTIReng
dc.subjectFunctional surfaceseng
dc.subjectHeavy metal adsorptioneng
dc.subjectModelingeng
dc.subjectSurface functional groupseng
dc.subjectZn 2+eng
dc.subjectFourier transform infrared spectroscopyeng
dc.titleUnravelling the influence of surface functional groups and surface charge on heavy metal adsorption onto carbonaceous materials: An in-depth DFT studyeng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1016/j.mtcomm.2024.108647
dc.relation.citationvolume39
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationFlórez, E., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Colombia
dc.affiliationJimenez-Orozco, C., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Colombia
dc.relation.referencesWang, J., Guo, X., Adsorption kinetics and isotherm models of heavy metals by various adsorbents: an overview (2023) Crit. Rev. Environ. Sci. Technol., 53 (21), pp. 1837-1865
dc.relation.referencesDu, F., Liu, L., Pan, Y., Wu, C., Wang, R., Zhao, Z., A novel biochar-based composite hydrogel for removing heavy metals in water and alleviating cadmium stress in tobacco seedlings (2023) Sci. Rep., 13 (1), pp. 1-14
dc.relation.referencesDehghani, M.H., Afsari Sardari, S., Afsharnia, M., Qasemi, M., Shams, M., Removal of toxic lead from aqueous solution using a low-cost adsorbent (2023) Sci. Rep., 13 (1), pp. 1-12
dc.relation.referencesYin, K., Wang, J., Zhai, S., Xu, X., Li, T., Sun, S., Adsorption mechanisms for cadmium from aqueous solutions by oxidant-modified biochar derived from Platanus orientalis Linn leaves (2022) J. Hazard. Mater., 428 (October 2021)
dc.relation.referencesYe, Q., Li, Q., Li, X., Removal of heavy metals from wastewater using biochars: adsorption and mechanisms (2022) Environ. Pollut. Bioavailab., 34 (1), pp. 385-394
dc.relation.referencesPang, Y., Zhao, C., Li, Y., Li, Q., Bayongzhong, X., Peng, D., Cadmium adsorption performance and mechanism from aqueous solution using red mud modified with amorphous MnO2 (2022) Sci. Rep., 12 (1), pp. 1-18
dc.relation.referencesZhou, D., Bao, X., Chen, Z., Liu, R., Huang, M., Xia, Y., Experimental and numerical investigations of biochar-facilitated Cd2+ transport in saturated porous media: role of solution pH and ionic strength (2023) Biochar, 5 (1)
dc.relation.referencesDeng, Y., Huang, S., Laird, D.A., Wang, X., Meng, Z., Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems (2019) Chemosphere, 218, pp. 308-318
dc.relation.referencesHan, S., Xie, H., Hu, J., Fan, X., Hao, C., Wang, X., Preparation of modified reed carbon composite hydrogels for trapping Cu2+, Ni2+ and methylene blue in aqueous solutions (2022) J. Colloid Interface Sci., 628, pp. 878-890
dc.relation.referencesManikandan, S.K., Nair, V., Pseudomonas stutzeri Immobilized Sawdust Biochar for Nickel Ion Removal (2022) Catalysts, 12 (12)
dc.relation.referencesCheng, S., Zhao, S., Guo, H., Xing, B., Liu, Y., Zhang, C., High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed (2022) Bioresour. Technol., 343 (August 2021)
dc.relation.referencesGao, Z., Shan, D., He, J., Huang, T., Mao, Y., Tan, H., Effects and mechanism on cadmium adsorption removal by CaCl2-modified biochar from selenium-rich straw (2023) Bioresour. Technol., 370 (November 2022)
dc.relation.referencesGuo, S., Yang, H., Sun, Q., Zhang, G., Zhao, T., Zhou, Y., Evaluation of a novel carbon-based micro-nano zero-valent iron composite for immobilization of heavy metals in soil (2023) J. Environ. Chem. eng., 11 (3)
dc.relation.referencesGiraldo, S., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Flórez, E., Franco, C.A., Application of Orange Peel Waste as Adsorbent for Methylene Blue and Cd2+ Simultaneous Remediation (2022) Molecules, 27 (16)
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Muñoz-Saldaña, J., Flórez, E., Acelas, N., Eco-friendly materials obtained through a simple thermal transformation of water hyacinth (Eichhornia crassipes) for the removal and immobilization of Cd2+ and Cu2+ from aqueous solutions (2021) Environ. Nanotechnol., Monit. Manag, 16 (August)
dc.relation.referencesGonzález, P.G., Pliego-Cuervo, Y.B., Adsorption of Cd(II), Hg(II) and Zn(II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata (2014) Chem. eng. Res Des., 92 (11), pp. 2715-2724
dc.relation.referencesGill, S.S., Goyal, T., Goswami, M., Patel, P., Das Gupta, G., Verma, S.K., Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges (2023) Environ. Sci. Pollut. Res, 30 (27), pp. 69727-69750
dc.relation.referencesZhang, J.W., Mariska, S., Pap, S., Tran, H.N., Chao, H.P., Enhanced separation capacity of carbonaceous materials (hydrochar, biochar, and activated carbon) toward potential toxic metals through grafting copolymerization (2023) Sep Purif. Technol., 320 (May)
dc.relation.referencesKumar, R., Sharma, P., Sharma, P.K., Rose, P.K., Singh, R.K., Kumar, N., Rice husk biochar - A novel engineered bio-based material for transforming groundwater-mediated fluoride cycling in natural environments (2023) J. Environ. Manag. [Internet], 343. , 〈https://linkinghub.elsevier.com/retrieve/pii/S0301479723010101〉, Available from:
dc.relation.referencesGoh, C.L., Sethupathi, S., Bashir, M.J., Ahmed, W., Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal (2019) J. Environ. Manag., 237 (February), pp. 281-288
dc.relation.referencesKhan, Z.H., Gao, M., Qiu, W., Islam, M.S., Song, Z., Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution (2020) Chemosphere, 246
dc.relation.referencesLi, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q., Mechanisms of metal sorption by biochars: Biochar characteristics and modifications (2017) Chemosphere, 178, pp. 466-478
dc.relation.referencesde Paula Ramos, B., Perez, I.D., Paiano, M.S., Vieira, M.G.A., Boina, R.F., Activated carbons from passion fruit shells in adsorption of multimetal wastewater (2022) Environ. Sci. Pollut. Res, 29 (1), pp. 1446-1457
dc.relation.referencesLiu, T., Lawluvy, Y., Shi, Y., Ighalo, J.O., He, Y., Zhang, Y., Adsorption of cadmium and lead from aqueous solution using modified biochar: A review (2022) J. Environ. Chem. eng., 10 (1)
dc.relation.referencesLuo, M., Jiang, X., Liu, Y., Liu, Y., Yu, H., Niu, Y., Enhanced adsorption complexation of biochar by nitrogen-containing functional groups (2023) J. Environ. Chem. eng., 11 (6)
dc.relation.referencesZama, E.F., Zhu, Y.G., Reid, B.J., Sun, G.X., The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution (2017) J. Clean. Prod., 148, pp. 127-136
dc.relation.referencesYu, P., Li, Y., Cai, Z., Liu, H., Wang, Z., Huang, W., Simultaneous removal of Cd and ciprofloxacin hydrochloride by ZVI/biochar composite in water: Compound effects and removal mechanism (2023) Sep Purif. Technol., 327 (June)
dc.relation.referencesKozyatnyk, I., Njenga, M., Use of biochar and Moringa oleifera in greywater treatment to remove heavy metals and contaminants of emerging concern (2023) Bioresour. Technol. Rep., 24 (September)
dc.relation.referencesFseha, Y.H., Sizirici, B., Yildiz, I., Yavuz, C., Pristine biochar performance investigation to remove metals in primary and secondary treated municipal wastewater for groundwater recharge application (2022) PLoS One, 17 (12 December), pp. 1-25
dc.relation.referencesBaskaran, P., Abraham, M., Adsorption of cadmium (Cd) and lead (Pb) using powdered activated carbon derived from Cocos nucifera waste: A kinetics and equilibrium study for long-term sustainability (2022) Sustain Energy Technol. Assess., 53 (September)
dc.relation.referencesAl-Anber, Z.A., Matouq, M.A.D., Batch adsorption of cadmium ions from aqueous solution by means of olive cake (2008) J. Hazard Mater., 151 (1), pp. 194-201
dc.relation.referencesZhang, Z., Li, Y., Zong, Y., Yu, J., Ding, H., Kong, Y., Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis (2022) Bioresour. Technol., 361 (July)
dc.relation.referencesForgionny, A., Acelas, N.Y., Ocampo-Pérez, R., Padilla-Ortega, E., Pérez, S., Flórez, E., Mechanism adsorption analysis during the removal of Cd2+ and Cu2+ onto cedar sawdust via experiment coupled with theoretical calculation: Mono- and multicomponent systems (2022) Environ. Nanotechnol., Monit. Manag [Internet], 18. , 〈https://linkinghub.elsevier.com/retrieve/pii/S2215153222000757〉, Available from:
dc.relation.referencesSellaoui, L., Mendoza-Castillo, D.I., Reynel-Ávila, H.E., Ávila-Camacho, B.A., Díaz-Muñoz, L.L., Ghalla, H., Understanding the adsorption of Pb2+, Hg2+ and Zn2+ from aqueous solution on a lignocellulosic biomass char using advanced statistical physics models and density functional theory simulations (2019) Chem. eng. J., 365 (February), pp. 305-316
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., (2009), … Fox D.J. Gaussian 09 Revision E.01
dc.relation.referencesAdamo, C., Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model (1999) J. Chem. Phys., 110 (13), pp. 6158-6170
dc.relation.referencesWeigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy (2005) Phys. Chem. Chem. Phys., 7 (18), p. 3297
dc.relation.referencesKeith, T.A., , pp. 22-35. , Frisch M.J. Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation. In 1994
dc.relation.referencesPadak, B., Wilcox, J., Understanding mercury binding on activated carbon (2009) Carbon N. Y, 47 (12), pp. 2855-2864
dc.relation.referencesMontoya, A., Truong, T.N., Sarofim, A.F., Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion (2000) J. Phys. Chem. A, 104 (36), pp. 8409-8417
dc.relation.referencesForgionny, A., Acelas, N.Y., Jimenez-Orozco, C., Flórez, E., Toward the design of efficient adsorbents for Hg2+ removal: molecular and thermodynamic insights (2020) Int J. Quantum Chem., 120
dc.relation.referencesLangmuir, D., Aqueous Environmental Geochemistry. PRENTICE H (1997), Prentice-Hall Inc New Jersey
dc.relation.referencesHering, F.M.M.M.J.G., Principles and Applications of Aquatic Chemistry. Wiley, editor (1993), Wiley New York
dc.relation.referencesKalmykova, Y., Strömvall, A.M., Steenari, B.M., Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations (2008) J. Hazard Mater., 152 (2), pp. 885-891
dc.relation.referencesLiu, Y., Peng, Y., An, B., Li, L., Liu, Y., Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations (2020) Chemosphere, 246
dc.relation.referencesChafai, N., Chafaa, S., Benbouguerra, K., Daoud, D., Hellal, A., Mehri M. Synthesis, characterization and the inhibition activity of a new α-aminophosphonic derivative on the corrosion of XC48 carbon steel in 0.5M H2SO4: experimental and theoretical studies (2017) J. Taiwan Inst. Chem. eng. [Internet], 70, pp. 331-344. , 〈https://linkinghub.elsevier.com/retrieve/pii/S1876107016304047〉, (Available from)
dc.relation.referencesVerma, C., Olasunkanmi, L.O., Bahadur, I., Lgaz, H., Quraishi, M.A., Haque, J., Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium (2019) J. Mol. Liq., 273, pp. 1-15
dc.relation.referencesGuediri, A., Bouguettoucha, A., Chebli, D., Chafai, N., Amrane, A., Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid (2020) J. Mol. Struct., 1202
dc.relation.referencesGiesbers, M., Marcelis, A.T.M., Zuilhof, H., Simulation of XPS C1s spectra of organic monolayers by quantum chemical methods (2013) Langmuir, 29 (15), pp. 4782-4788
dc.relation.referencesTardio, S., Cumpson, P.J., Practical estimation of XPS binding energies using widely available quantum chemistry software (2018) Surf. Interface Anal., 50 (1), pp. 5-12
dc.relation.referencesGlendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., (2003), NBO Version 3.1. Pittsburgh.: Gaussian Inc.,;
dc.relation.referencesRamirez-Muñoz, A., Pérez, S., Muñoz-Saldaña, J., Flórez, E., Acelas, N., Eco-friendly materials obtained through a simple thermal transformation of water hyacinth (Eichhornia crassipes) for the removal and immobilization of Cd2+ and Cu2+ from aqueous solutions (2021) Environ. Nanotechnol., Monit. Manag, 16 (September)
dc.relation.referencesYang, K., Wang, X., Cheng, H., Tao, S., Enhanced immobilization of cadmium and lead adsorbed on crop straw biochars by simulated aging processes (2022) Environ. Pollut., 302 (February)
dc.relation.referencesKumar, A., Thakur, A., Panesar, P.S., A review on the industrial wastewater with the efficient treatment techniques (2023) Chem. Pap. Versita
dc.relation.referencesMoradi, O., Zare, K., Adsorption of Pb(II), Cd(II) and Cu(II) ions in aqueous solution on SWCNTs and SWCNT -COOH surfaces: kinetics studies (2011) Fuller. Nanotub Carbon Nanostruct., 19 (7), pp. 628-652
dc.relation.referencesChen, N., Yang, R.T., Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry (1998) Carbon N. Y, 36 (7-8), pp. 1061-1070
dc.relation.referencesKara, A., Acemioǧlu, B., Alma, M.H., Gebe, M., Adsorption of Cr(III), Ni(II), Zn(II), Co(II) ions onto phenolated wood resin (2006) J. Appl. Polym. Sci., 101 (5), pp. 2838-2846
dc.relation.referencesBakr, A.A., Sayed, N.A., Salama, T.M., Ali, I.O., Abdel Gayed, R.R., Negm, N.A., Kinetics and thermodynamics of Mn(II) removal from aqueous solutions onto Mg-Zn-Al LDH/montmorillonite nanocomposite (2018) Egypt J. Pet., 27 (4), pp. 1215-1220
dc.relation.referencesAnnadurai, G., Juang, R.S., Lee, D.J., Adsorption of heavy metals from water using banana and orange peels (2003) Water Sci. Technol., 47 (1), pp. 185-190
dc.relation.referencesMehri, M., Chafai, N., Ouksel, L., Benbouguerra, K., Hellal, A., Chafaa, S., Synthesis, electrochemical and classical evaluation of the antioxidant activity of three α-aminophosphonic acids: Experimental and theoretical investigation (2018) J. Mol. Struct. [Internet], 1171, pp. 179-189. , 〈https://linkinghub.elsevier.com/retrieve/pii/S0022286018306483〉, (Available from)
dc.relation.referencesNieboer DHSR, E., The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions (1980) Environ. Pollut. Ser. B Chem. Phys., 1 (1), pp. 3-26
dc.relation.referencesPearson, R.G., Hard and soft acids and bases, HSAB, Part II: Underlying theories (1968) J. Chem. Educ., 45 (10), pp. 643-648
dc.relation.referencesde Souza, T.N.V., de Carvalho, S.M.L., Vieira, M.G.A., da Silva, M.G.C., Brasil, D.D.S.B., Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors (2018) Appl. Surf. Sci., 448, pp. 662-670
dc.relation.referencesArshadi, M., Amiri, M.J., Mousavi, S., Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash (2014) Water Resour. Ind., 6, pp. 1-17
dc.relation.referencesYang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review (2019) Chem. eng. J., 366, pp. 608-621
dc.relation.referencesLi, K., Xue, D., Estimation of Electronegativity Values of Elements in Different Valence States (2006) J. Phys. Chem. A, 110 (39), pp. 11332-11337
dc.relation.referencesAl-Saadi, A.A., Saleh, T.A., Gupta, V.K., Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires (2013) J. Mol. Liq., 188, pp. 136-142
dc.relation.referencesWang, Z., Liu, J., Yang, Y., Yu, Y., Yan, X., Zhang, Z., AMn2O4 (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas (2020) J. Hazard. Mater., 388
dc.relation.referencesSheng, P.X., Ting, Y.-P., Chen, J.P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms (2004) J. Colloid Interface Sci., 275 (1), pp. 131-141
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem