dc.contributor.author | Rodriguez J.A | |
dc.contributor.author | Jimenez-Orozco C | |
dc.contributor.author | Flórez E | |
dc.contributor.author | Viñes F | |
dc.contributor.author | Illas F. | |
dc.date.accessioned | 2024-07-31T21:07:12Z | |
dc.date.available | 2024-07-31T21:07:12Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 19327447 | |
dc.identifier.uri | http://hdl.handle.net/11407/8501 | |
dc.description | The studies described in this Perspective show that transition metal carbide (TMC) nanoparticles can be very useful for the activation of three molecules located at the heart of C1 chemistry: H2, CH4, and CO2. They also can play a major role in the trapping and conversion of two major greenhouse gases. A combination of experiment and theory has shed light on the physical and chemical properties of these systems, which can be very different from those of bulk carbides. Molecular clusters of these compounds, which can be inserted inside the cages of zeolites or carbon nanotubes, have unsaturated metal and carbon atoms that frequently work in a cooperative way when dealing with hard-to-activate molecules, such as CH4 and CO2. These molecular clusters can evolve into nanoparticles of small to medium size (<15 nm) that have unique carbon/metal ratios and structures not seen in the bulk metal carbides. Even when their structures are cuts from bulk lattices, the TMC nanoparticles have corner or edge atoms that are active for the cleavage and conversion of C-H and C-O bonds. Here, we cover experimental and theoretical studies with well-defined metal carbide nanoparticles prepared by different methods, free and supported on diverse substrates. The Perspective ends with a discussion of current challenges and potential applications. © 2023 American Chemical Society. | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85170280344&doi=10.1021%2facs.jpcc.3c04541&partnerID=40&md5=2baaa11382e0caba13e082e77091bc19 | |
dc.source | Journal of Physical Chemistry C | |
dc.source | J. Phys. Chem. C | |
dc.source | Scopus | |
dc.subject | Carbides | eng |
dc.subject | Greenhouse gases | eng |
dc.subject | Metal nanoparticles | eng |
dc.subject | Molecules | eng |
dc.subject | Transition metals | eng |
dc.subject | Unsaturated compounds | eng |
dc.subject | Zeolites | eng |
dc.subject | Carbide nanoparticles | eng |
dc.subject | Carbon atoms | eng |
dc.subject | CH 4 | eng |
dc.subject | Greenhouses gas | eng |
dc.subject | Metal atoms | eng |
dc.subject | Metal-carbide | eng |
dc.subject | Molecular clusters | eng |
dc.subject | Physical and chemical properties | eng |
dc.subject | Transition metals carbides | eng |
dc.subject | Unsaturated metals | eng |
dc.subject | Carbon dioxide | eng |
dc.title | C1 Chemistry on Metal Carbide Nanoparticles: Boosting the Conversion of CO2 and CH4 | eng |
dc.type | article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.1021/acs.jpcc.3c04541 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Rodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States | |
dc.affiliation | Jimenez-Orozco, C., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65 Medellın050021, Colombia | |
dc.affiliation | Flórez, E., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65 Medellın050021, Colombia | |
dc.affiliation | Viñes, F., Departament de Ciència dels Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain | |
dc.affiliation | Illas, F., Departament de Ciència dels Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain | |
dc.relation.references | Karl, T.R., Trenberth, K.E., Modern Global Climate Change (2003) Science, 302, pp. 1719-1723 | |
dc.relation.references | Basile, A., (2013) Methane in the Environment: Occurence, Uses and Pollution, , Ed. | |
dc.relation.references | Nova Science Publication Inc. | |
dc.relation.references | Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., Susanne, K., Seyboth, K., Brunner, S., (2014) Climate Change 2014: Mitigation of Climate Change | |
dc.relation.references | Rodriguez, J.A., Rui, N., Zhang, F., Senanayake, S.D., In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C-H Bonds (2022) ACS Catal., 12, pp. 5470-5488 | |
dc.relation.references | Aresta, M., (2010) Carbon Dioxide as Chemical Feedstock, , Ed. | |
dc.relation.references | Wiley-VCH New York | |
dc.relation.references | Burghaus, U., Perspective of Carbon Dioxide Chemistry ─ Adsorption Kinetics and Dynamics of CO2 on Selected Model Surfaces (2009) Surf. Sci., 148, pp. 212-220 | |
dc.relation.references | Roy, S., Cherevotan, A., Peter, S.C., Themochemical CO2 Hydrogenation to Single Carbon products: Scientific and Technological Challenges (2018) ACS Energy Lett., 3, pp. 1938-1966 | |
dc.relation.references | D’Alessandro, D.M., Smit, B., Long, J.R., Carbon Dioxide Capture: Prospects for New Materials (2010) Angew. Chemie - Int. Ed., 49, pp. 6058-6082 | |
dc.relation.references | Khirsariya, P., Mewada, R.K., Single step oxidation of methane to methanol - towards better understanding (2013) Procedia engineering, 51, pp. 409-415 | |
dc.relation.references | Sushkevich, V.L., Palagin, D., Ranocchiari, M., van Bokhoven, J.A., Selective anaerobic oxidation of methane enable direct synthesis of methanol (2017) Science, 356, pp. 523-527 | |
dc.relation.references | Ranjan, P., Saptal, V.B., Bera, J.K., Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides (2022) ChemSusChem, 15 | |
dc.relation.references | Powar, N.S., Hiragond, C.B., Bae, D., In, S.-I., Two-dimensional Metal Carbides for Electro- and Photocatalytic CO2 Reduction: Review (2022) Journal of CO2 Utilization, 55, p. 101814 | |
dc.relation.references | Zhang, S.B.X.Y., Pessemesse, Q., Lätsch, L., engel, K.M., Stark, W.J., van Bavel, A.P., Horton, A.D., Copéret, C., Role and Dynamics of Transition Metal Carbides in Methane Coupling (2023) Chem. Sci., 14, pp. 5899-5905 | |
dc.relation.references | Prats, H., Gutierrez, R.A., Piñero, J.J., Viñes, F., Bromley, S.T., Ramirez, P.J., Rodriguez, J.A., Illas, F., Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of Metal-Carbide Interations on the Cleavage of the C-H bond (2019) J. Am. Chem. Soc., 141, pp. 5303-5313 | |
dc.relation.references | Czaplicka, N., Rogala, A., Wysocka, I., Metal (Mo, W., Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons - A Review (2021) Int. J. Mol. Sci., 22, p. 12337 | |
dc.relation.references | Levy, R.B., Boudart, M., Platinum-like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549 | |
dc.relation.references | Hwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212 | |
dc.relation.references | Porosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO (2014) Angew. Chemie - Int. Ed., 53, pp. 6705-6709 | |
dc.relation.references | Rodriguez, J.A., Liu, P., Stacchiola, D.J., Senanayake, S.D., White, M.G., Chen, J.G., Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and Metal-Carbide Interfaces in the Activation of CO2 (2015) ACS Catal., 5, pp. 6696-6706 | |
dc.relation.references | Baddour, F.G., Roberts, E.J., To, A.T., Wang, L., Habas, S.E., Ruddy, D.A., Bedford, N.M., Schaidle, J.A., An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO2 Hydrogenation (2020) J. Am. Chem. Soc., 142, pp. 1010-1019 | |
dc.relation.references | Porosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991 | |
dc.relation.references | Juneau, M., Yaffe, D., Liu, R., Agwara, J.N., Porosoff, M.D., Establishing Tunsten Carbides as Active Catalsyst for CO2 Hydrogenation (2022) Nanoscale, 14, pp. 16458-16466 | |
dc.relation.references | Oyama, S.T., (1996) The Chemistry of Transition Metal Carbides and Nitrides, , Ed. | |
dc.relation.references | Chapman & Hall New York | |
dc.relation.references | Rodriguez, J.A., Illas, F., Activation of Noble Metals on Metal-Carbide Surfaces: Novel catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions (2012) Phys. Chem. Chem. Phys., 14, pp. 427-438 | |
dc.relation.references | Vidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., CO2 Activation and Methanol Synthesis on Au/TiC and Cu/TiC Catalysts: Au-C and Cu-C Interactions and the Effects of Charge Polarization on Chemical Reactivity (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280 | |
dc.relation.references | Kunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2 Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144 | |
dc.relation.references | Kunkel, C., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Combining Theory and Experiment for a Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces (2019) J. Phys. Chem. C, 123, pp. 7567-7576 | |
dc.relation.references | Figueras, M., Gutierrez, R., Prats, H., Viñes, F., Ramirez, P.J., Illas, F., Rodriguez, J.A., Boosting the activity of transition metal carbides towards methane activation by nanostructuring (2020) Phys. Chem. Chem. Phys., 22, pp. 7110-7118 | |
dc.relation.references | Dongil, A.B., Zhang, Q., Pastor-Perez, L., Ramirez-Reina, T., Guerrero-Ruiz, A., Rodriguez-Ramos, I., Effect of Cu and Cs in the β-Mo2C system for CO2 Hydrogenation to Methanol (2020) Catalysts, 10, pp. 1213-1222 | |
dc.relation.references | Zhou, H., Chen, Z., Kountoupi, E., Tsoukalou, A., Abdala, P.M., Florian, P., Fedorov, A., Müller, C.R., Two-dimensional Molybdenum Carbide 2D-Mo2C as a Superior Catalyst for CO2 hydrogenation (2021) Nature Commun., 12, p. 5510 | |
dc.relation.references | Heracleous, E., Koidi, V., Lappas, A.A., CO2 Conversion over Cu-Mo2C Catalysts: Effect of the Cu Promoter and Preparation Method (2021) Catal. Sci. & Technol., 11, pp. 1467-1480 | |
dc.relation.references | Razdan, N.K., Kumar, A., Bhan, A., Controlling kinetic and diffusive length-scales during absorptive hydrogen removal in methane dehydroaromatization on MoCx/H-ZSM-5 catalysts (2019) J. Catal., 372, pp. 370-381 | |
dc.relation.references | Ding, W., Li, S., Meitner, G.D., Iglesia, E., Methane Conversion to Aromatics on Mo/H-ZSM5: Structure of Molybdenum Species in Working Catalysts (2001) J. Phys. Chem. B, 105, pp. 506-513 | |
dc.relation.references | Solymosi, F., Szöke, A., Cserényi, J., Conversion of Methane over Mo2C and Mo2C/ZSM-5 Catalysts (1996) Catal. Lett., 39, pp. 157-161 | |
dc.relation.references | Rahman, M., Sridhar, A., Khatib, S.J., Impact of the Presence of Mo Carbide Species Prepared Ex-situ in Mo/HZSM-5 on the Catalytic Properties in Methane Aromatization (2018) Applied Catal. A: General, 558, pp. 67-80 | |
dc.relation.references | Horn, J.M., Song, Z., Potapenko, D.V., Hrbek, J., White, M.G., Characterization of Molybdenum Carbide Nanoparticles Formed on Au(111) Using Reactive-Layer Assisted Deposition (2005) J. Phys. Chem. B, 109, pp. 44-47 | |
dc.relation.references | Jiménez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Effect of Nanostructuring on the Interaction of CO2 with Molybdenum Carbide Nanoparticles (2022) Phys. Chem. Chem. Phys., 24, pp. 16556-16565 | |
dc.relation.references | Xiang, J.Y., Liu, S.C., Hu, W.T., Zhang, Y., Chen, C.K., Wang, P., He, J.L., Lu, Y.F., Mechanochemically Activated Synthesis of Zirconium Carbide Nanoparticles at Room Temperature: A Simple Route to Prepare Nanoparticles of Transition Metal Carbides (2011) J. European Ceramic Soc., 31, pp. 1491-1496 | |
dc.relation.references | Giordano, C., Antonietti, M., Synthesis of Crystalline Metal Nitride and Metal Carbide Nanostructuctures by Sol-gel Chemistry (2011) Nano Today, 6, pp. 366-380 | |
dc.relation.references | Hussain, S., Abbas Zaidi, S., Vikraman, D., Kim, H.-S., Jung, J., Facile Preparation of Tungsten Carbide Nanoparticles for an Efficient Oxalic Acid Sensor via Imprinting (2020) Microchemical Journal, 159, p. 105404 | |
dc.relation.references | Wan, K., Li, Y., Wang, Y., Wei, G., Recent Advances in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications (2021) Nanomaterials, 11, p. 246 | |
dc.relation.references | Leskiw, B.D., Castleman, A.W., Met-Cars: A Unique Class of Molecular Clusters (2002) C.R. Physique, 3, pp. 251-272 | |
dc.relation.references | Jin, C., Haufler, R.E., Hettich, R.L., Barshick, C.M., Compton, R.N., Puretzky, A.A., Dem’Yanenko, A.V., Tuinman, A.A., Synthesis and Characterization of Molybdenum Carbide Clusters MonC4n (n= 1 to 4) (1994) Science, 263, pp. 68-71 | |
dc.relation.references | Cui, T., Dong, J., Pan, X., Yu, T., Fu, Q., Bao, X., Enhanced Hydrogen Evolution Reaction over Molybdenum Carbide Nanoparticles Confined Inside Single-walled Carbon Nanotubes (2019) J. Energy Chem., 28, pp. 123-127 | |
dc.relation.references | Akman, N., Durgun, E., Yildirim, T., Ciraci, S., Hydrogen Storage Capacity of Titanium Met-cars (2006) J. Phys.: Condens. Matter, 18, pp. 9509-9517 | |
dc.relation.references | Figueras, M., Gutierrez, R., Viñes, F., Ramirez, P.J., Illas, F., Rodriguez, J.A., Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications (2020) J. Phys. Chem. Lett., 11, pp. 8437-8441 | |
dc.relation.references | Megha, S., Banerjee, A., Ghanty, T.K., Role of Metcar on the Adsorption and Activation of Carbon Dioxide: A DFT study (2021) Phys. Chem. Chem. Phys., 23, pp. 5559-5570 | |
dc.relation.references | Megha, S., Banerjee, A., Ghanty, T.K., Adsorption and activation of CO2 molecule on subnanometer-sized anionic vanadium carbide clusters VnC4- (n = 1-6): A theoretical study (2021) Molecular Catal., 515, p. 111871 | |
dc.relation.references | Jiménez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Ethylene Hydrogenation Molecular Mechanism on MoCy Nanoparticles (2023) J. Phys. Chem. C, 127, pp. 7666-7673 | |
dc.relation.references | Liu, P., Rodriguez, J.A., Hou, H., Muckerman, J.T., Chemical Reactivity of Metcar Ti8C12, Nanocrystal Ti14C13 and a Bulk TiC(001) Surface: A Density Functional Study (2003) J. Chem. Phys., 118, pp. 7737-7740 | |
dc.relation.references | Selvan, R., Pradeep, T., Metallocarbohedrenes: Recent Advancements (1998) Curr. Sci., 74, pp. 666-670 | |
dc.relation.references | Viñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalysis Size Matters: Tuning the Molecular Mechanism of the Water-gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112 | |
dc.relation.references | Gao, J., Zheng, Y., Fitzgerald, G.B., de Joannis, J., Tang, Y., Wachs, I., Podkolzin, S.G., Structure of Mo2Cx and Mo4Cx Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM-5 Zeolites (2014) J. Phys. Chem. C, 118, pp. 4670-4679 | |
dc.relation.references | Alaba, P.A., Abbas, A., Huang, J., Daud, W.M.A.W., Molybdenum Carbide Nanoparticle: Understanding the Surface Properties and Reaction Mechanism for Energy Production towards a Sustainable Future (2018) Renewable and Sustainable Energy Reviews, 91, pp. 287-300 | |
dc.relation.references | Chen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498 | |
dc.relation.references | Koverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883 | |
dc.relation.references | Ozbek, M.O., Niemantsverdriet, J.W., Elementary Raections of CO and H2 on C-terminated Fe5C2(001) Surfaces (2014) J. Catal., 317, pp. 158-166 | |
dc.relation.references | Tuomi, S., Guil-Lopez, R., Kallio, T., Molybdenum Carbide Nanoparticles as a Catalyst for the Hydrogen Evolution Reaction and the Effect of pH (2016) J. Catal., 334, pp. 102-109 | |
dc.relation.references | Huang, J., Hong, W., Li, J., Wang, B., Liu, W., High-performance Tungsten Carbide Electrocatalysts for the Hydrogen Evolution Reaction (2020) Sustainable Energy & Fuels, 4, pp. 1078-1083 | |
dc.relation.references | Silveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen Adsorption on Transition Metal Carbides: A DFT Study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343 | |
dc.relation.references | Gao, Q., Zhang, W., Shi, Z., Yang, L., Tang, Y., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution (2019) Adv. Mater., 31, p. 1802880 | |
dc.relation.references | Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26 | |
dc.relation.references | Liu, Y., Kelly, T.G., Chen, J.G., Mustain, W.E., Metal Carbides as Alternative Electrocatalysts Support (2013) ACS Catal., 3, pp. 1184-1194 | |
dc.relation.references | Chen, W.-F., Muckerman, J.T., Fujita, E., Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts (2013) ChemComm, 49, pp. 8896-8909 | |
dc.relation.references | Ding, H., Fan, X., Li, C., Liu, X., Jiang, D., Wang, C., First-principles Study of Hydrogen Storage in Non-stoichiometric TiCx (2013) J. Alloys Compd., 551, pp. 67-71 | |
dc.relation.references | Piñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020 | |
dc.relation.references | Salehin, R., Thompson, G.B., Weinberger, C.R., Hydrogen Trapping and Storage in the Group IVB-VIB Transition Metal Carbides (2022) Materials & Design, 214, p. 110399 | |
dc.relation.references | Xu, Y.T., Xiao, X., Ye, Z.-M., Zhao, S., Shen, R., He, C.-T., Zhang, J.-P., Chen, X.-M., Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution (2017) J. Am. Chem. Soc., 139, pp. 5285-5288 | |
dc.relation.references | Horn, R., Schlögl, R., Methane Activation by Heterogeneous Catalysis (2015) Catal. Lett., 145, pp. 23-39 | |
dc.relation.references | Guo, X., Fang, G., Li, G., Ma, H., Fan, H., Yu, L., Ma, C., Wei, M., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen (2014) Science, 344, pp. 616-619 | |
dc.relation.references | Li, H.-F., Li, Z.-Y., Liu, Q.-Y., Li, X.-N., Zhao, Y.-X., He, S.-G., Methane Activation by Iron-Carbide Cluster Anions FeC6- (2015) J. Phys. Chem. Lett., 6, pp. 2287-2291 | |
dc.relation.references | Beebe, T.P., Goodman, W.D., Kay, B.D., Yates, J.T., Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single Crystal Surfaces (1987) J. Chem. Phys., 87, pp. 2305-2315 | |
dc.relation.references | Choudhary, T.V., Aksoylu, E., Goodman, D.W., Nonoxidative Activation of Methane (2003) Catal. Rev., 45, pp. 151-203 | |
dc.relation.references | Huang, E., Rui, N., Rosales, R., Liu, P., Rodriguez, J.A., Activation and Conversion of Methane to Syngas over ZrO2/Cu(111) Catalysts near Room Temperature (2023) J. Am. Chem. Soc., 145, pp. 8326-8331 | |
dc.relation.references | Liang, Z., Li, T., Kim, M., Asthagiri, A., Weaver, J.F., Low-temperature Activation of Methane on the IrO2(110) Surface (2017) Science, 356, pp. 299-303 | |
dc.relation.references | Li, H.-F., Zhao, Y.-K., Yuan, Z., Liu, Q.-Y., Li, Z.Y., Li, X.-N., Ning, C.-G., He, S.-G., Methane Activation by Tantalum Carbide Cluster Anions Ta2C4- (2017) J. Phys. Chem. Lett., 8, pp. 605-610 | |
dc.relation.references | Zhang, S.B., Pessemesse, Q., Lätsch, L., engel, K.M., Stark, W.J., van Bavel, A.P., Horton, A.D., Copéret, C., Role and Dynamics of Transition Metal Carbides in Methane Coupling (2023) Chem. Sci., 14, pp. 5899-5905 | |
dc.relation.references | Arora, S., Prasad, R., An Overview on Dry Reforming of Methane: Strategies to reduce Carbonaceous Deactivation of Catalysts (2016) RSC Adv., 6, pp. 108668-108688 | |
dc.relation.references | Zhang, A., Zhu, A., Chen, B., Zhang, S., Au, C., Shi, C., In-situ Synthesis of Nickel-modified Molybdenum Carbide Catalyst for Dry reforming of Methane (2011) Catal. Commun., 12, pp. 803-807 | |
dc.relation.references | Brungs, A.J., York, A.P.E., Claridge, J.B., Marquez-Alvarez, C., Green, M.L.V., Dry Reforming of Methane to Synthesis Gas over Supported Molybdenum Carbide Catalysts (2000) Catal. Lett., 70, pp. 117-122 | |
dc.relation.references | Silva, C.G., Passos, F.B., Teixeira da Silva, V., Effect of Carburization Conditions on the Activity of Molybdenum Carbide-Supported Catalysts Promoted by Nickel for the Dry Reforming of Methane (2021) Energy Fuels, 35, pp. 17833-17847 | |
dc.relation.references | Solymosi, F., The Bonding, Structure and Reactions of CO2 Adsorbed on Clean and Promoted Metal Surfaces (1991) J. Mol. Catal., 65, pp. 337-358 | |
dc.relation.references | Posada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2 Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921 | |
dc.relation.references | Quesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916 | |
dc.relation.references | Kunkel, C., Viñes, F., Illas, F., Surface Activity of Early Transition Metal Oxycarbides: CO2 Adsorption Case Study (2019) J. Phys. Chem. C, 123, pp. 3664-3671 | |
dc.relation.references | Figueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Supported Molybdenum Carbide Nanoparticles as Excellent Catalyst for CO2 Hydrogenation (2021) ACS Catal., 11, pp. 9679-9687 | |
dc.relation.references | Xu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A.J.C.L., Synthesis of α-MoC1-x and β-MoCy Catalysts for CO2 Hydrogenation by Thermal Carburization of Mo-oxide in Hydrocarbon and Hydrogen Mixtures (2014) Catal. Lett., 144, pp. 1418-1424 | |
dc.relation.references | Lin, L., Yu, Q., Peng, M., Li, A., Yao, S., Tian, S., Liu, X., Gao, R., Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water (2021) J. Am. Chem. Soc., 143, pp. 309-317 | |
dc.relation.references | Zhao, Z., Yao, X., Hou, G., Reaction Pathways of Methanol Reforming over Pt/α-MoC Catalysts Revealed by In Situ High-Pressure MAS NMR (2023) ACS Catal., 13, pp. 7978-7986 | |
dc.relation.references | Yao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Wen, X., Atomic-layered Au Clusters on α-MoC as Catalysts for the Low-temperature Water-gas Shift Reaction (2017) Science, 357, pp. 389-393 | |
dc.relation.references | Liu, X., Kunkel, C., Ramírez de la Piscina, P., Homs, N., Viñes, F., Illas, F., Effective and Highly Selective CO Generation from CO2 Using a Polycrystalline α-Mo2C Catalyst (2017) ACS Catal., 7, pp. 4323-4335 | |
dc.relation.references | Anasori, B., Lukatskaya, M.R., Gogotsi, Y., 2D Metal Carbides and Nitrides (MXenes) for Energy Storage (2017) Nat. Rev. Mater., 2, p. 16098. , and references therein | |
dc.relation.references | Morales-García, A., Calle-Vallejo, F., Illas, F., MXenes: New Horizons in Catalysis (2020) ACS Catal., 10, pp. 13487-13503 | |
dc.relation.references | Morales-Salvador, R., Gouveia, J.D., Morales-García, Á., Viñes, F., Gomes, J.R.B., Illas, F., Carbon capture and usage by MXenes (2021) ACS Catal., 11, pp. 11248-11255 | |
dc.relation.references | Chew, L., Kangvansura, P., Ruland, H., Schulte, H.J., Somsen, C., Xia, W., Eggeler, G., Muhler, M., Effect of Nitrogen Doping on the Reducibility, Activity and Selectivity of Carbon Nanotube-supported Iron Catalysts Applied in CO2 Hydrogenation (2014) Applied Catal. A: General, 482, pp. 163-170 | |
dc.relation.references | Cao, S., Ma, Y., Chu, W., Liu, Y., High-density MoCx Nanoclusters Anchored on Nanodiamond-derived Nanocarbon as a Robust CO2 Reduction Catalyst for Syngas Production (2022) Fuel, 323, p. 124347 | |
dc.relation.references | Yang, W., Fidelis, T.T., Sun, W.-H., Machine Learning in Catalysis, From Proposal to Practicing (2020) ACS Omega, 5, pp. 83-88 | |
dc.relation.references | Lozano-Reis, P., Prats, H., Sayós, R., Illas, F., Limitations of Free Energy Diagrams to Predict the Catalytic Activity: The Reverse Water-gas Shift Reaction Catalyzed by Ni/TiC (2023) J. Catal., 425, pp. 203-211 | |
dc.relation.references | Gu, G.H., Choi, C., Lee, Y., Situmorang, A.B., Noh, J., Kim, Y.-H., Jung, Y., Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation (2020) Adv. Mater., 32 (35), p. 1907865 | |
dc.relation.references | Ma, Y., Guo, Z., Jiang, Q., Wu, K.-H., Gong, H., Liu, Y., Molybdenum Carbide Clusters for the Thermal Conversion of CO2 to CO via Reverse Water-gas Shift Reaction (2020) J. Energy Chem., 50, pp. 37-43 | |
dc.relation.references | Zheng, Y., Tang, Y., Gallagher, J.R., Gao, J., Miller, J.T., Wachs, I.E., Podkolzin, S.G., Molybdenum Oxide, Oxycarbide, and Carbide: Controlling the Dynamic Composition, Size, and Catalytic Activity of Zeolite-Supported Nanostructures (2019) J. Phys. Chem. C, 123, pp. 22281-22292 | |
dc.relation.references | Kurlov, A., Deeva, E., Abdala, P.M., Lebedev, D., Tsoukalou, A., Comas-Vives, A., Fedorov, A., Müller, C.R., Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane (2020) Nature Commun., 11, p. 4920 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |