Show simple item record

dc.contributor.authorRodriguez J.A
dc.contributor.authorJimenez-Orozco C
dc.contributor.authorFlórez E
dc.contributor.authorViñes F
dc.contributor.authorIllas F.
dc.date.accessioned2024-07-31T21:07:12Z
dc.date.available2024-07-31T21:07:12Z
dc.date.created2023
dc.identifier.issn19327447
dc.identifier.urihttp://hdl.handle.net/11407/8501
dc.descriptionThe studies described in this Perspective show that transition metal carbide (TMC) nanoparticles can be very useful for the activation of three molecules located at the heart of C1 chemistry: H2, CH4, and CO2. They also can play a major role in the trapping and conversion of two major greenhouse gases. A combination of experiment and theory has shed light on the physical and chemical properties of these systems, which can be very different from those of bulk carbides. Molecular clusters of these compounds, which can be inserted inside the cages of zeolites or carbon nanotubes, have unsaturated metal and carbon atoms that frequently work in a cooperative way when dealing with hard-to-activate molecules, such as CH4 and CO2. These molecular clusters can evolve into nanoparticles of small to medium size (<15 nm) that have unique carbon/metal ratios and structures not seen in the bulk metal carbides. Even when their structures are cuts from bulk lattices, the TMC nanoparticles have corner or edge atoms that are active for the cleavage and conversion of C-H and C-O bonds. Here, we cover experimental and theoretical studies with well-defined metal carbide nanoparticles prepared by different methods, free and supported on diverse substrates. The Perspective ends with a discussion of current challenges and potential applications. © 2023 American Chemical Society.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85170280344&doi=10.1021%2facs.jpcc.3c04541&partnerID=40&md5=2baaa11382e0caba13e082e77091bc19
dc.sourceJournal of Physical Chemistry C
dc.sourceJ. Phys. Chem. C
dc.sourceScopus
dc.subjectCarbideseng
dc.subjectGreenhouse gaseseng
dc.subjectMetal nanoparticleseng
dc.subjectMoleculeseng
dc.subjectTransition metalseng
dc.subjectUnsaturated compoundseng
dc.subjectZeoliteseng
dc.subjectCarbide nanoparticleseng
dc.subjectCarbon atomseng
dc.subjectCH 4eng
dc.subjectGreenhouses gaseng
dc.subjectMetal atomseng
dc.subjectMetal-carbideeng
dc.subjectMolecular clusterseng
dc.subjectPhysical and chemical propertieseng
dc.subjectTransition metals carbideseng
dc.subjectUnsaturated metalseng
dc.subjectCarbon dioxideeng
dc.titleC1 Chemistry on Metal Carbide Nanoparticles: Boosting the Conversion of CO2 and CH4eng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.jpcc.3c04541
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, United States
dc.affiliationJimenez-Orozco, C., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65 Medellın050021, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Universidad de Medellín, Carrera 87 No 30-65 Medellın050021, Colombia
dc.affiliationViñes, F., Departament de Ciència dels Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain
dc.affiliationIllas, F., Departament de Ciència dels Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain
dc.relation.referencesKarl, T.R., Trenberth, K.E., Modern Global Climate Change (2003) Science, 302, pp. 1719-1723
dc.relation.referencesBasile, A., (2013) Methane in the Environment: Occurence, Uses and Pollution, , Ed.
dc.relation.referencesNova Science Publication Inc.
dc.relation.referencesEdenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., Susanne, K., Seyboth, K., Brunner, S., (2014) Climate Change 2014: Mitigation of Climate Change
dc.relation.referencesRodriguez, J.A., Rui, N., Zhang, F., Senanayake, S.D., In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C-H Bonds (2022) ACS Catal., 12, pp. 5470-5488
dc.relation.referencesAresta, M., (2010) Carbon Dioxide as Chemical Feedstock, , Ed.
dc.relation.referencesWiley-VCH New York
dc.relation.referencesBurghaus, U., Perspective of Carbon Dioxide Chemistry ─ Adsorption Kinetics and Dynamics of CO2 on Selected Model Surfaces (2009) Surf. Sci., 148, pp. 212-220
dc.relation.referencesRoy, S., Cherevotan, A., Peter, S.C., Themochemical CO2 Hydrogenation to Single Carbon products: Scientific and Technological Challenges (2018) ACS Energy Lett., 3, pp. 1938-1966
dc.relation.referencesD’Alessandro, D.M., Smit, B., Long, J.R., Carbon Dioxide Capture: Prospects for New Materials (2010) Angew. Chemie - Int. Ed., 49, pp. 6058-6082
dc.relation.referencesKhirsariya, P., Mewada, R.K., Single step oxidation of methane to methanol - towards better understanding (2013) Procedia engineering, 51, pp. 409-415
dc.relation.referencesSushkevich, V.L., Palagin, D., Ranocchiari, M., van Bokhoven, J.A., Selective anaerobic oxidation of methane enable direct synthesis of methanol (2017) Science, 356, pp. 523-527
dc.relation.referencesRanjan, P., Saptal, V.B., Bera, J.K., Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides (2022) ChemSusChem, 15
dc.relation.referencesPowar, N.S., Hiragond, C.B., Bae, D., In, S.-I., Two-dimensional Metal Carbides for Electro- and Photocatalytic CO2 Reduction: Review (2022) Journal of CO2 Utilization, 55, p. 101814
dc.relation.referencesZhang, S.B.X.Y., Pessemesse, Q., Lätsch, L., engel, K.M., Stark, W.J., van Bavel, A.P., Horton, A.D., Copéret, C., Role and Dynamics of Transition Metal Carbides in Methane Coupling (2023) Chem. Sci., 14, pp. 5899-5905
dc.relation.referencesPrats, H., Gutierrez, R.A., Piñero, J.J., Viñes, F., Bromley, S.T., Ramirez, P.J., Rodriguez, J.A., Illas, F., Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of Metal-Carbide Interations on the Cleavage of the C-H bond (2019) J. Am. Chem. Soc., 141, pp. 5303-5313
dc.relation.referencesCzaplicka, N., Rogala, A., Wysocka, I., Metal (Mo, W., Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons - A Review (2021) Int. J. Mol. Sci., 22, p. 12337
dc.relation.referencesLevy, R.B., Boudart, M., Platinum-like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science, 181, pp. 547-549
dc.relation.referencesHwu, H.H., Chen, J.G., Surface Chemistry of Transition Metal Carbides (2005) Chem. Rev., 105, pp. 185-212
dc.relation.referencesPorosoff, M.D., Yang, X., Boscoboinik, J.A., Chen, J.G., Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO2 to CO (2014) Angew. Chemie - Int. Ed., 53, pp. 6705-6709
dc.relation.referencesRodriguez, J.A., Liu, P., Stacchiola, D.J., Senanayake, S.D., White, M.G., Chen, J.G., Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and Metal-Carbide Interfaces in the Activation of CO2 (2015) ACS Catal., 5, pp. 6696-6706
dc.relation.referencesBaddour, F.G., Roberts, E.J., To, A.T., Wang, L., Habas, S.E., Ruddy, D.A., Bedford, N.M., Schaidle, J.A., An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO2 Hydrogenation (2020) J. Am. Chem. Soc., 142, pp. 1010-1019
dc.relation.referencesPorosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying Trends and Descriptors for Selective CO2 Conversion to CO over Transition Metal Carbides (2015) Chem. Commun., 51, pp. 6988-6991
dc.relation.referencesJuneau, M., Yaffe, D., Liu, R., Agwara, J.N., Porosoff, M.D., Establishing Tunsten Carbides as Active Catalsyst for CO2 Hydrogenation (2022) Nanoscale, 14, pp. 16458-16466
dc.relation.referencesOyama, S.T., (1996) The Chemistry of Transition Metal Carbides and Nitrides, , Ed.
dc.relation.referencesChapman & Hall New York
dc.relation.referencesRodriguez, J.A., Illas, F., Activation of Noble Metals on Metal-Carbide Surfaces: Novel catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions (2012) Phys. Chem. Chem. Phys., 14, pp. 427-438
dc.relation.referencesVidal, A.B., Feria, L., Evans, J., Takahashi, Y., Liu, P., Nakamura, K., Illas, F., Rodriguez, J.A., CO2 Activation and Methanol Synthesis on Au/TiC and Cu/TiC Catalysts: Au-C and Cu-C Interactions and the Effects of Charge Polarization on Chemical Reactivity (2012) J. Phys. Chem. Lett., 3, pp. 2275-2280
dc.relation.referencesKunkel, C., Viñes, F., Illas, F., Transition Metal Carbides as Novel Materials for CO2 Capture, Storage, and Activation (2016) Energy Environ. Sci., 9, pp. 141-144
dc.relation.referencesKunkel, C., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Combining Theory and Experiment for a Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces (2019) J. Phys. Chem. C, 123, pp. 7567-7576
dc.relation.referencesFigueras, M., Gutierrez, R., Prats, H., Viñes, F., Ramirez, P.J., Illas, F., Rodriguez, J.A., Boosting the activity of transition metal carbides towards methane activation by nanostructuring (2020) Phys. Chem. Chem. Phys., 22, pp. 7110-7118
dc.relation.referencesDongil, A.B., Zhang, Q., Pastor-Perez, L., Ramirez-Reina, T., Guerrero-Ruiz, A., Rodriguez-Ramos, I., Effect of Cu and Cs in the β-Mo2C system for CO2 Hydrogenation to Methanol (2020) Catalysts, 10, pp. 1213-1222
dc.relation.referencesZhou, H., Chen, Z., Kountoupi, E., Tsoukalou, A., Abdala, P.M., Florian, P., Fedorov, A., Müller, C.R., Two-dimensional Molybdenum Carbide 2D-Mo2C as a Superior Catalyst for CO2 hydrogenation (2021) Nature Commun., 12, p. 5510
dc.relation.referencesHeracleous, E., Koidi, V., Lappas, A.A., CO2 Conversion over Cu-Mo2C Catalysts: Effect of the Cu Promoter and Preparation Method (2021) Catal. Sci. & Technol., 11, pp. 1467-1480
dc.relation.referencesRazdan, N.K., Kumar, A., Bhan, A., Controlling kinetic and diffusive length-scales during absorptive hydrogen removal in methane dehydroaromatization on MoCx/H-ZSM-5 catalysts (2019) J. Catal., 372, pp. 370-381
dc.relation.referencesDing, W., Li, S., Meitner, G.D., Iglesia, E., Methane Conversion to Aromatics on Mo/H-ZSM5: Structure of Molybdenum Species in Working Catalysts (2001) J. Phys. Chem. B, 105, pp. 506-513
dc.relation.referencesSolymosi, F., Szöke, A., Cserényi, J., Conversion of Methane over Mo2C and Mo2C/ZSM-5 Catalysts (1996) Catal. Lett., 39, pp. 157-161
dc.relation.referencesRahman, M., Sridhar, A., Khatib, S.J., Impact of the Presence of Mo Carbide Species Prepared Ex-situ in Mo/HZSM-5 on the Catalytic Properties in Methane Aromatization (2018) Applied Catal. A: General, 558, pp. 67-80
dc.relation.referencesHorn, J.M., Song, Z., Potapenko, D.V., Hrbek, J., White, M.G., Characterization of Molybdenum Carbide Nanoparticles Formed on Au(111) Using Reactive-Layer Assisted Deposition (2005) J. Phys. Chem. B, 109, pp. 44-47
dc.relation.referencesJiménez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Effect of Nanostructuring on the Interaction of CO2 with Molybdenum Carbide Nanoparticles (2022) Phys. Chem. Chem. Phys., 24, pp. 16556-16565
dc.relation.referencesXiang, J.Y., Liu, S.C., Hu, W.T., Zhang, Y., Chen, C.K., Wang, P., He, J.L., Lu, Y.F., Mechanochemically Activated Synthesis of Zirconium Carbide Nanoparticles at Room Temperature: A Simple Route to Prepare Nanoparticles of Transition Metal Carbides (2011) J. European Ceramic Soc., 31, pp. 1491-1496
dc.relation.referencesGiordano, C., Antonietti, M., Synthesis of Crystalline Metal Nitride and Metal Carbide Nanostructuctures by Sol-gel Chemistry (2011) Nano Today, 6, pp. 366-380
dc.relation.referencesHussain, S., Abbas Zaidi, S., Vikraman, D., Kim, H.-S., Jung, J., Facile Preparation of Tungsten Carbide Nanoparticles for an Efficient Oxalic Acid Sensor via Imprinting (2020) Microchemical Journal, 159, p. 105404
dc.relation.referencesWan, K., Li, Y., Wang, Y., Wei, G., Recent Advances in the Fabrication of 2D and 3D Metal Carbides-Based Nanomaterials for Energy and Environmental Applications (2021) Nanomaterials, 11, p. 246
dc.relation.referencesLeskiw, B.D., Castleman, A.W., Met-Cars: A Unique Class of Molecular Clusters (2002) C.R. Physique, 3, pp. 251-272
dc.relation.referencesJin, C., Haufler, R.E., Hettich, R.L., Barshick, C.M., Compton, R.N., Puretzky, A.A., Dem’Yanenko, A.V., Tuinman, A.A., Synthesis and Characterization of Molybdenum Carbide Clusters MonC4n (n= 1 to 4) (1994) Science, 263, pp. 68-71
dc.relation.referencesCui, T., Dong, J., Pan, X., Yu, T., Fu, Q., Bao, X., Enhanced Hydrogen Evolution Reaction over Molybdenum Carbide Nanoparticles Confined Inside Single-walled Carbon Nanotubes (2019) J. Energy Chem., 28, pp. 123-127
dc.relation.referencesAkman, N., Durgun, E., Yildirim, T., Ciraci, S., Hydrogen Storage Capacity of Titanium Met-cars (2006) J. Phys.: Condens. Matter, 18, pp. 9509-9517
dc.relation.referencesFigueras, M., Gutierrez, R., Viñes, F., Ramirez, P.J., Illas, F., Rodriguez, J.A., Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications (2020) J. Phys. Chem. Lett., 11, pp. 8437-8441
dc.relation.referencesMegha, S., Banerjee, A., Ghanty, T.K., Role of Metcar on the Adsorption and Activation of Carbon Dioxide: A DFT study (2021) Phys. Chem. Chem. Phys., 23, pp. 5559-5570
dc.relation.referencesMegha, S., Banerjee, A., Ghanty, T.K., Adsorption and activation of CO2 molecule on subnanometer-sized anionic vanadium carbide clusters VnC4- (n = 1-6): A theoretical study (2021) Molecular Catal., 515, p. 111871
dc.relation.referencesJiménez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Ethylene Hydrogenation Molecular Mechanism on MoCy Nanoparticles (2023) J. Phys. Chem. C, 127, pp. 7666-7673
dc.relation.referencesLiu, P., Rodriguez, J.A., Hou, H., Muckerman, J.T., Chemical Reactivity of Metcar Ti8C12, Nanocrystal Ti14C13 and a Bulk TiC(001) Surface: A Density Functional Study (2003) J. Chem. Phys., 118, pp. 7737-7740
dc.relation.referencesSelvan, R., Pradeep, T., Metallocarbohedrenes: Recent Advancements (1998) Curr. Sci., 74, pp. 666-670
dc.relation.referencesViñes, F., Rodriguez, J.A., Liu, P., Illas, F., Catalysis Size Matters: Tuning the Molecular Mechanism of the Water-gas Shift Reaction on Titanium Carbide Based Compounds (2008) J. Catal., 260, pp. 103-112
dc.relation.referencesGao, J., Zheng, Y., Fitzgerald, G.B., de Joannis, J., Tang, Y., Wachs, I., Podkolzin, S.G., Structure of Mo2Cx and Mo4Cx Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM-5 Zeolites (2014) J. Phys. Chem. C, 118, pp. 4670-4679
dc.relation.referencesAlaba, P.A., Abbas, A., Huang, J., Daud, W.M.A.W., Molybdenum Carbide Nanoparticle: Understanding the Surface Properties and Reaction Mechanism for Energy Production towards a Sustainable Future (2018) Renewable and Sustainable Energy Reviews, 91, pp. 287-300
dc.relation.referencesChen, J.G., Carbide and Nitride Overlayers on Early Transition Metal Surfaces: Preparation, Characterization, and Reactivities (1996) Chem. Rev., 96, pp. 1477-1498
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites (2019) J. Phys. Chem. C, 123, pp. 8871-8883
dc.relation.referencesOzbek, M.O., Niemantsverdriet, J.W., Elementary Raections of CO and H2 on C-terminated Fe5C2(001) Surfaces (2014) J. Catal., 317, pp. 158-166
dc.relation.referencesTuomi, S., Guil-Lopez, R., Kallio, T., Molybdenum Carbide Nanoparticles as a Catalyst for the Hydrogen Evolution Reaction and the Effect of pH (2016) J. Catal., 334, pp. 102-109
dc.relation.referencesHuang, J., Hong, W., Li, J., Wang, B., Liu, W., High-performance Tungsten Carbide Electrocatalysts for the Hydrogen Evolution Reaction (2020) Sustainable Energy & Fuels, 4, pp. 1078-1083
dc.relation.referencesSilveri, F., Quesne, M.G., Roldan, A., de Leeuw, N.H., Catlow, C.R.A., Hydrogen Adsorption on Transition Metal Carbides: A DFT Study (2019) Phys. Chem. Chem. Phys., 21, pp. 5335-5343
dc.relation.referencesGao, Q., Zhang, W., Shi, Z., Yang, L., Tang, Y., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution (2019) Adv. Mater., 31, p. 1802880
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) J. Electrochem. Soc., 152, pp. J23-J26
dc.relation.referencesLiu, Y., Kelly, T.G., Chen, J.G., Mustain, W.E., Metal Carbides as Alternative Electrocatalysts Support (2013) ACS Catal., 3, pp. 1184-1194
dc.relation.referencesChen, W.-F., Muckerman, J.T., Fujita, E., Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts (2013) ChemComm, 49, pp. 8896-8909
dc.relation.referencesDing, H., Fan, X., Li, C., Liu, X., Jiang, D., Wang, C., First-principles Study of Hydrogen Storage in Non-stoichiometric TiCx (2013) J. Alloys Compd., 551, pp. 67-71
dc.relation.referencesPiñero, J.J., Ramírez, P.J., Bromley, S.T., Illas, F., Viñes, F., Rodriguez, J.A., Diversity of Adsorbed Hydrogen on the TiC(001) Surface at High Coverages (2018) J. Phys. Chem. C, 122, pp. 28013-28020
dc.relation.referencesSalehin, R., Thompson, G.B., Weinberger, C.R., Hydrogen Trapping and Storage in the Group IVB-VIB Transition Metal Carbides (2022) Materials & Design, 214, p. 110399
dc.relation.referencesXu, Y.T., Xiao, X., Ye, Z.-M., Zhao, S., Shen, R., He, C.-T., Zhang, J.-P., Chen, X.-M., Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution (2017) J. Am. Chem. Soc., 139, pp. 5285-5288
dc.relation.referencesHorn, R., Schlögl, R., Methane Activation by Heterogeneous Catalysis (2015) Catal. Lett., 145, pp. 23-39
dc.relation.referencesGuo, X., Fang, G., Li, G., Ma, H., Fan, H., Yu, L., Ma, C., Wei, M., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen (2014) Science, 344, pp. 616-619
dc.relation.referencesLi, H.-F., Li, Z.-Y., Liu, Q.-Y., Li, X.-N., Zhao, Y.-X., He, S.-G., Methane Activation by Iron-Carbide Cluster Anions FeC6- (2015) J. Phys. Chem. Lett., 6, pp. 2287-2291
dc.relation.referencesBeebe, T.P., Goodman, W.D., Kay, B.D., Yates, J.T., Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single Crystal Surfaces (1987) J. Chem. Phys., 87, pp. 2305-2315
dc.relation.referencesChoudhary, T.V., Aksoylu, E., Goodman, D.W., Nonoxidative Activation of Methane (2003) Catal. Rev., 45, pp. 151-203
dc.relation.referencesHuang, E., Rui, N., Rosales, R., Liu, P., Rodriguez, J.A., Activation and Conversion of Methane to Syngas over ZrO2/Cu(111) Catalysts near Room Temperature (2023) J. Am. Chem. Soc., 145, pp. 8326-8331
dc.relation.referencesLiang, Z., Li, T., Kim, M., Asthagiri, A., Weaver, J.F., Low-temperature Activation of Methane on the IrO2(110) Surface (2017) Science, 356, pp. 299-303
dc.relation.referencesLi, H.-F., Zhao, Y.-K., Yuan, Z., Liu, Q.-Y., Li, Z.Y., Li, X.-N., Ning, C.-G., He, S.-G., Methane Activation by Tantalum Carbide Cluster Anions Ta2C4- (2017) J. Phys. Chem. Lett., 8, pp. 605-610
dc.relation.referencesZhang, S.B., Pessemesse, Q., Lätsch, L., engel, K.M., Stark, W.J., van Bavel, A.P., Horton, A.D., Copéret, C., Role and Dynamics of Transition Metal Carbides in Methane Coupling (2023) Chem. Sci., 14, pp. 5899-5905
dc.relation.referencesArora, S., Prasad, R., An Overview on Dry Reforming of Methane: Strategies to reduce Carbonaceous Deactivation of Catalysts (2016) RSC Adv., 6, pp. 108668-108688
dc.relation.referencesZhang, A., Zhu, A., Chen, B., Zhang, S., Au, C., Shi, C., In-situ Synthesis of Nickel-modified Molybdenum Carbide Catalyst for Dry reforming of Methane (2011) Catal. Commun., 12, pp. 803-807
dc.relation.referencesBrungs, A.J., York, A.P.E., Claridge, J.B., Marquez-Alvarez, C., Green, M.L.V., Dry Reforming of Methane to Synthesis Gas over Supported Molybdenum Carbide Catalysts (2000) Catal. Lett., 70, pp. 117-122
dc.relation.referencesSilva, C.G., Passos, F.B., Teixeira da Silva, V., Effect of Carburization Conditions on the Activity of Molybdenum Carbide-Supported Catalysts Promoted by Nickel for the Dry Reforming of Methane (2021) Energy Fuels, 35, pp. 17833-17847
dc.relation.referencesSolymosi, F., The Bonding, Structure and Reactions of CO2 Adsorbed on Clean and Promoted Metal Surfaces (1991) J. Mol. Catal., 65, pp. 337-358
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The Bending Machine: CO2 Activation and Hydrogenation on δ-MoC(001) and β-Mo2C(001) Surfaces (2014) Phys. Chem. Chem. Phys., 16, pp. 14912-14921
dc.relation.referencesQuesne, M.G., Roldán, A., de Leeuw, N.H., Catlow, C.R.A., Bulk and Surface Properties of Metal Carbides: Implications for Catalysis (2018) Phys. Chem. Chem. Phys., 20, pp. 6905-6916
dc.relation.referencesKunkel, C., Viñes, F., Illas, F., Surface Activity of Early Transition Metal Oxycarbides: CO2 Adsorption Case Study (2019) J. Phys. Chem. C, 123, pp. 3664-3671
dc.relation.referencesFigueras, M., Gutiérrez, R.A., Viñes, F., Ramírez, P.J., Rodriguez, J.A., Illas, F., Supported Molybdenum Carbide Nanoparticles as Excellent Catalyst for CO2 Hydrogenation (2021) ACS Catal., 11, pp. 9679-9687
dc.relation.referencesXu, W., Ramirez, P.J., Stacchiola, D., Rodriguez, J.A.J.C.L., Synthesis of α-MoC1-x and β-MoCy Catalysts for CO2 Hydrogenation by Thermal Carburization of Mo-oxide in Hydrocarbon and Hydrogen Mixtures (2014) Catal. Lett., 144, pp. 1418-1424
dc.relation.referencesLin, L., Yu, Q., Peng, M., Li, A., Yao, S., Tian, S., Liu, X., Gao, R., Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water (2021) J. Am. Chem. Soc., 143, pp. 309-317
dc.relation.referencesZhao, Z., Yao, X., Hou, G., Reaction Pathways of Methanol Reforming over Pt/α-MoC Catalysts Revealed by In Situ High-Pressure MAS NMR (2023) ACS Catal., 13, pp. 7978-7986
dc.relation.referencesYao, S., Zhang, X., Zhou, W., Gao, R., Xu, W., Ye, Y., Lin, L., Wen, X., Atomic-layered Au Clusters on α-MoC as Catalysts for the Low-temperature Water-gas Shift Reaction (2017) Science, 357, pp. 389-393
dc.relation.referencesLiu, X., Kunkel, C., Ramírez de la Piscina, P., Homs, N., Viñes, F., Illas, F., Effective and Highly Selective CO Generation from CO2 Using a Polycrystalline α-Mo2C Catalyst (2017) ACS Catal., 7, pp. 4323-4335
dc.relation.referencesAnasori, B., Lukatskaya, M.R., Gogotsi, Y., 2D Metal Carbides and Nitrides (MXenes) for Energy Storage (2017) Nat. Rev. Mater., 2, p. 16098. , and references therein
dc.relation.referencesMorales-García, A., Calle-Vallejo, F., Illas, F., MXenes: New Horizons in Catalysis (2020) ACS Catal., 10, pp. 13487-13503
dc.relation.referencesMorales-Salvador, R., Gouveia, J.D., Morales-García, Á., Viñes, F., Gomes, J.R.B., Illas, F., Carbon capture and usage by MXenes (2021) ACS Catal., 11, pp. 11248-11255
dc.relation.referencesChew, L., Kangvansura, P., Ruland, H., Schulte, H.J., Somsen, C., Xia, W., Eggeler, G., Muhler, M., Effect of Nitrogen Doping on the Reducibility, Activity and Selectivity of Carbon Nanotube-supported Iron Catalysts Applied in CO2 Hydrogenation (2014) Applied Catal. A: General, 482, pp. 163-170
dc.relation.referencesCao, S., Ma, Y., Chu, W., Liu, Y., High-density MoCx Nanoclusters Anchored on Nanodiamond-derived Nanocarbon as a Robust CO2 Reduction Catalyst for Syngas Production (2022) Fuel, 323, p. 124347
dc.relation.referencesYang, W., Fidelis, T.T., Sun, W.-H., Machine Learning in Catalysis, From Proposal to Practicing (2020) ACS Omega, 5, pp. 83-88
dc.relation.referencesLozano-Reis, P., Prats, H., Sayós, R., Illas, F., Limitations of Free Energy Diagrams to Predict the Catalytic Activity: The Reverse Water-gas Shift Reaction Catalyzed by Ni/TiC (2023) J. Catal., 425, pp. 203-211
dc.relation.referencesGu, G.H., Choi, C., Lee, Y., Situmorang, A.B., Noh, J., Kim, Y.-H., Jung, Y., Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation (2020) Adv. Mater., 32 (35), p. 1907865
dc.relation.referencesMa, Y., Guo, Z., Jiang, Q., Wu, K.-H., Gong, H., Liu, Y., Molybdenum Carbide Clusters for the Thermal Conversion of CO2 to CO via Reverse Water-gas Shift Reaction (2020) J. Energy Chem., 50, pp. 37-43
dc.relation.referencesZheng, Y., Tang, Y., Gallagher, J.R., Gao, J., Miller, J.T., Wachs, I.E., Podkolzin, S.G., Molybdenum Oxide, Oxycarbide, and Carbide: Controlling the Dynamic Composition, Size, and Catalytic Activity of Zeolite-Supported Nanostructures (2019) J. Phys. Chem. C, 123, pp. 22281-22292
dc.relation.referencesKurlov, A., Deeva, E., Abdala, P.M., Lebedev, D., Tsoukalou, A., Comas-Vives, A., Fedorov, A., Müller, C.R., Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane (2020) Nature Commun., 11, p. 4920
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record