REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and testing of an all-terrain wheelchair built with light magnesium alloy to improve the mobility of the rural population [Desarrollo y validación de una silla de ruedas todoterreno construida con una aleación ligera de magnesio para mejorar la movilidad de la población rural]

Thumbnail
Share this
Date
2023
Author
Chacón-Cifuentes P
Valencia-Escobar A
Zuleta-Gil A
Sevilla-Cadavid G
Correa-Bedoya E
Echeverría-Echeverría F.

Citación

       
TY - GEN T1 - Development and testing of an all-terrain wheelchair built with light magnesium alloy to improve the mobility of the rural population [Desarrollo y validación de una silla de ruedas todoterreno construida con una aleación ligera de magnesio para mejorar la movilidad de la población rural] Y1 - 2023 UR - http://hdl.handle.net/11407/8510 PB - Universidad de Caldas AB - The objective of this work was to design and test an all-terrain wheelchair for the rural population, implementing an AZ31 magnesium alloy and a lever propulsion mechanism to reduce the effort made during mobility. Two wheelchair prototypes were evaluated under the ISO7176 standard and usability testing. To validate the fact that the wheelchair weight reduction represents a benefit, a repeated measures study was carried out to establish the effect of the material change on mobility efficiency. The tests were carried out in an academic campus in Colombia in an open space with a surface covered with grass, unevenness, and other obstacles to emulate the conditions of a rural environment. A convenience sample was used, randomly selecting 17 subjects from the academic community without disabilities or overweight. Two prototypes were manufactured, one in aluminum and the second in magnesium alloy. For the study of repeated measurements, each participant had to complete three tests with both prototypes: a short-distance test, an obstacles test, and a long-distance test, which were performed randomly. The magnesium alloy prototype achieved a 25% weight reduction. In ISO7176 testing, both prototypes maintained their structural integrity and functionality. Also, with a confidence of 95%, it was possible to establish that with the magnesium prototype, the users traveled a greater distance in the same time. The new design meets the needs of mobility, support, and comfort of users, making efficient use of magnesium alloy. Weight reduction in the wheelchair allows the user to save time on mobility or cover greater distances with less physical effort. This is a starting point to offer a contextualized and affordable product to the Latin American population. © 2023 Universidad de Caldas. All rights reserved. ER - @misc{11407_8510, author = {}, title = {Development and testing of an all-terrain wheelchair built with light magnesium alloy to improve the mobility of the rural population [Desarrollo y validación de una silla de ruedas todoterreno construida con una aleación ligera de magnesio para mejorar la movilidad de la población rural]}, year = {2023}, abstract = {The objective of this work was to design and test an all-terrain wheelchair for the rural population, implementing an AZ31 magnesium alloy and a lever propulsion mechanism to reduce the effort made during mobility. Two wheelchair prototypes were evaluated under the ISO7176 standard and usability testing. To validate the fact that the wheelchair weight reduction represents a benefit, a repeated measures study was carried out to establish the effect of the material change on mobility efficiency. The tests were carried out in an academic campus in Colombia in an open space with a surface covered with grass, unevenness, and other obstacles to emulate the conditions of a rural environment. A convenience sample was used, randomly selecting 17 subjects from the academic community without disabilities or overweight. Two prototypes were manufactured, one in aluminum and the second in magnesium alloy. For the study of repeated measurements, each participant had to complete three tests with both prototypes: a short-distance test, an obstacles test, and a long-distance test, which were performed randomly. The magnesium alloy prototype achieved a 25% weight reduction. In ISO7176 testing, both prototypes maintained their structural integrity and functionality. Also, with a confidence of 95%, it was possible to establish that with the magnesium prototype, the users traveled a greater distance in the same time. The new design meets the needs of mobility, support, and comfort of users, making efficient use of magnesium alloy. Weight reduction in the wheelchair allows the user to save time on mobility or cover greater distances with less physical effort. This is a starting point to offer a contextualized and affordable product to the Latin American population. © 2023 Universidad de Caldas. All rights reserved.}, url = {http://hdl.handle.net/11407/8510} }RT Generic T1 Development and testing of an all-terrain wheelchair built with light magnesium alloy to improve the mobility of the rural population [Desarrollo y validación de una silla de ruedas todoterreno construida con una aleación ligera de magnesio para mejorar la movilidad de la población rural] YR 2023 LK http://hdl.handle.net/11407/8510 PB Universidad de Caldas AB The objective of this work was to design and test an all-terrain wheelchair for the rural population, implementing an AZ31 magnesium alloy and a lever propulsion mechanism to reduce the effort made during mobility. Two wheelchair prototypes were evaluated under the ISO7176 standard and usability testing. To validate the fact that the wheelchair weight reduction represents a benefit, a repeated measures study was carried out to establish the effect of the material change on mobility efficiency. The tests were carried out in an academic campus in Colombia in an open space with a surface covered with grass, unevenness, and other obstacles to emulate the conditions of a rural environment. A convenience sample was used, randomly selecting 17 subjects from the academic community without disabilities or overweight. Two prototypes were manufactured, one in aluminum and the second in magnesium alloy. For the study of repeated measurements, each participant had to complete three tests with both prototypes: a short-distance test, an obstacles test, and a long-distance test, which were performed randomly. The magnesium alloy prototype achieved a 25% weight reduction. In ISO7176 testing, both prototypes maintained their structural integrity and functionality. Also, with a confidence of 95%, it was possible to establish that with the magnesium prototype, the users traveled a greater distance in the same time. The new design meets the needs of mobility, support, and comfort of users, making efficient use of magnesium alloy. Weight reduction in the wheelchair allows the user to save time on mobility or cover greater distances with less physical effort. This is a starting point to offer a contextualized and affordable product to the Latin American population. © 2023 Universidad de Caldas. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
The objective of this work was to design and test an all-terrain wheelchair for the rural population, implementing an AZ31 magnesium alloy and a lever propulsion mechanism to reduce the effort made during mobility. Two wheelchair prototypes were evaluated under the ISO7176 standard and usability testing. To validate the fact that the wheelchair weight reduction represents a benefit, a repeated measures study was carried out to establish the effect of the material change on mobility efficiency. The tests were carried out in an academic campus in Colombia in an open space with a surface covered with grass, unevenness, and other obstacles to emulate the conditions of a rural environment. A convenience sample was used, randomly selecting 17 subjects from the academic community without disabilities or overweight. Two prototypes were manufactured, one in aluminum and the second in magnesium alloy. For the study of repeated measurements, each participant had to complete three tests with both prototypes: a short-distance test, an obstacles test, and a long-distance test, which were performed randomly. The magnesium alloy prototype achieved a 25% weight reduction. In ISO7176 testing, both prototypes maintained their structural integrity and functionality. Also, with a confidence of 95%, it was possible to establish that with the magnesium prototype, the users traveled a greater distance in the same time. The new design meets the needs of mobility, support, and comfort of users, making efficient use of magnesium alloy. Weight reduction in the wheelchair allows the user to save time on mobility or cover greater distances with less physical effort. This is a starting point to offer a contextualized and affordable product to the Latin American population. © 2023 Universidad de Caldas. All rights reserved.
URI
http://hdl.handle.net/11407/8510
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com