Show simple item record

dc.contributor.authorDurango M.C
dc.contributor.authorTorres-Silva E.A
dc.contributor.authorOrozco-Duque A.
dc.date.accessioned2024-07-31T21:07:20Z
dc.date.available2024-07-31T21:07:20Z
dc.date.created2023
dc.identifier.issn20933681
dc.identifier.urihttp://hdl.handle.net/11407/8544
dc.descriptionObjectives: A substantial portion of the data contained in Electronic Health Records (EHR) is unstructured, often appearing as free text. This format restricts its potential utility in clinical decision-making. Named entity recognition (NER) methods address the challenge of extracting pertinent information from unstructured text. The aim of this study was to outline the current NER methods and trace their evolution from 2011 to 2022. Methods: We conducted a methodological literature review of NER methods, with a focus on distinguishing the classification models, the types of tagging systems, and the languages employed in various corpora. Results: Several methods have been documented for automatically extracting relevant information from EHRs using natural language processing techniques such as NER and relation extraction (RE). These methods can automatically extract concepts, events, attributes, and other data, as well as the relationships between them. Most NER studies conducted thus far have utilized corpora in english or Chinese. Additionally, the bidirectional encoder representation from transformers using the BIO tagging system architecture is the most frequently reported classification scheme. We discovered a limited number of papers on the implementation of NER or RE tasks in EHRs within a specific clinical domain. Conclusions: EHRs play a pivotal role in gathering clinical information and could serve as the primary source for automated clinical decision support systems. However, the creation of new corpora from EHRs in specific clinical domains is essential to facilitate the swift development of NER and RE models applied to EHRs for use in clinical practice. © 2023 The Korean Society of Medical Informatics.
dc.language.isoeng
dc.publisherKorean Society of Medical Informatics
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85176382158&doi=10.4258%2fhir.2023.29.4.286&partnerID=40&md5=b7f884d63c6feef29fec9c5d99bf6d26
dc.sourceHealthcare Informatics Research
dc.sourceHealthc. Informatics Res.
dc.sourceScopus
dc.subjectClinical Decision Support Systemeng
dc.subjectDeep Learningeng
dc.subjectElectronic Health Recordseng
dc.subjectNatural Language Processingeng
dc.subjectSupervised Machine Learningeng
dc.titleNamed Entity Recognition in Electronic Health Records: A Methodological Revieweng
dc.typereview
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.type.spaRevisión
dc.identifier.doi10.4258/hir.2023.29.4.286
dc.relation.citationvolume29
dc.relation.citationissue4
dc.relation.citationstartpage286
dc.relation.citationendpage300
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationDurango, M.C., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Antioquia, Colombia
dc.affiliationTorres-Silva, E.A., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Antioquia, Colombia
dc.affiliationOrozco-Duque, A., Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Antioquia, Colombia, Facultad de Ingenierías, Universidad de Medellín, Antioquia, Colombia
dc.relation.referencesMurdoch, TB, Detsky, AS., The inevitable application of big data to health care (2013) JAMA, 309 (13), pp. 1351-1352. , https://doi.org/10.1001/jama.2013.393
dc.relation.referencesYehia, E, Boshnak, H, AbdelGaber, S, Abdo, A, Elzanfaly, DS., Ontology-based clinical information extraction from physician’s free-text notes (2019) J Biomed Inform, 98, p. 103276. , https://doi.org/10.1016/j.jbi.2019.103276
dc.relation.referencesElDin, HG, AbdulRazek, M, Abdelshafi, M, Sahlol, AT., Med-Flair: medical named entity recognition for diseases and medications based on Flair embedding (2021) Procedia Comput Sci, 189, pp. 67-75. , https://doi.org/10.1016/j.procs.2021.05.078
dc.relation.referencesKaplar, A, Stosovic, M, Kaplar, A, Brkovic, V, Naumovic, R, Kovacevic, A., Evaluation of clinical named entity recognition methods for Serbian electronic health records (2022) Int J Med Inform, 164, p. 104805. , https://doi.org/10.1016/j.ijmedinf.2022.104805
dc.relation.referencesNeuraz, A, Looten, V, Rance, B, Daniel, N, Garcelon, N, Llanos, LC, Do you need embeddings trained on a massive specialized corpus for your clinical natural language processing task? (2019) Stud Health Technol Inform, 264, pp. 1558-1559. , https://doi.org/10.3233/shti190533
dc.relation.referencesKong, J, Zhang, L, Jiang, M, Liu, T., Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition (2021) J Biomed Inform, 116, p. 103737. , https://doi.org/10.1016/j.jbi.2021.103737
dc.relation.referencesXiong, Y, Wang, Z, Jiang, D, Wang, X, Chen, Q, Xu, H, A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text (2019) BMC Med Inform Decis Mak, 19, p. 66. , https://doi.org/10.1186/s12911-019-0770-7, (Suppl 2)
dc.relation.referencesJindal, P, Roth, D., Extraction of events and temporal expressions from clinical narratives (2013) J Biomed Inform, 46, pp. S13-S19. , https://doi.org/10.1016/j.jbi.2013.08.010, Suppl
dc.relation.referencesJiang, M, Chen, Y, Liu, M, Rosenbloom, ST, Mani, S, Denny, JC, A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries (2011) J Am Med Inform Assoc, 18 (5), pp. 601-606. , https://doi.org/10.1136/amiajnl-2011-000163
dc.relation.referencesNikfarjam, A, Emadzadeh, E, Gonzalez, G., Towards generating a patient’s timeline: extracting temporal relationships from clinical notes (2013) J Biomed Inform, 46, pp. S40-S47. , https://doi.org/10.1016/j.jbi.2013.11.001, Suppl
dc.relation.referencesCasillas, A, Perez, A, Oronoz, M, Gojenola, K, Santiso, S., Learning to extract adverse drug reaction events from electronic health records in Spanish (2016) Expert Syst Appl, 61 (1), pp. 235-245. , https://doi.org/10.1016/j.eswa.2016.05.034
dc.relation.referencesHenriksson, A, Kvist, M, Dalianis, H, Duneld, M., Identifying adverse drug event information in clinical notes with distributional semantic representations of context (2015) J Biomed Inform, 57, pp. 333-349. , https://doi.org/10.1016/j.jbi.2015.08.013
dc.relation.referencesde Bruijn, B, Cherry, C, Kiritchenko, S, Martin, J, Zhu, X., Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010 (2011) J Am Med Inform Assoc, 18 (5), pp. 557-562. , https://doi.org/10.1136/amiajnl-2011-000150
dc.relation.referencesCormack, J, Nath, C, Milward, D, Raja, K, Jonnalagadda, SR., Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge (2015) J Biomed Inform, 58, pp. S120-S127. , https://doi.org/10.1016/j.jbi.2015.06.030, Suppl
dc.relation.referencesGrouin, C, Grabar, N, Hamon, T, Rosset, S, Tannier, X, Zweigenbaum, P., Eventual situations for timeline extraction from clinical reports (2013) J Am Med Inform Assoc, 20 (5), pp. 820-827. , https://doi.org/10.1136/amiajnl-2013-001627
dc.relation.referencesLei, J, Tang, B, Lu, X, Gao, K, Jiang, M, Xu, H., A comprehensive study of named entity recognition in Chinese clinical text (2014) J Am Med Inform Assoc, 21 (5), pp. 808-814. , https://doi.org/10.1136/amiajnl-2013-002381
dc.relation.referencesDligach, D, Bethard, S, Becker, L, Miller, T, Savova, GK., Discovering body site and severity modifiers in clinical texts (2014) J Am Med Inform Assoc, 21 (3), pp. 448-454. , https://doi.org/10.1136/amiajnl-2013-001766
dc.relation.referencesJung, K, LePendu, P, Iyer, S, Bauer-Mehren, A, Percha, B, Shah, NH., Functional evaluation of out-of-the-box text-mining tools for data-mining tasks (2015) J Am Med Inform Assoc, 22 (1), pp. 121-131. , https://doi.org/10.1136/amia-jnl-2014-002902
dc.relation.referencesYang, H, Garibaldi, JM., Automatic detection of protected health information from clinic narratives (2015) J Biomed Inform, 58, pp. S30-S38. , https://doi.org/10.1016%2Fj.jbi.2015.06.015, (Suppl)
dc.relation.referencesLee, W, Kim, K, Lee, EY, Choi, J., Conditional random fields for clinical named entity recognition: a comparative study using Korean clinical texts (2018) Comput Biol Med, 101, pp. 7-14. , https://doi.org/10.1016/j.compbiomed.2018.07.019
dc.relation.referencesWang, H, Zhang, W, Zeng, Q, Li, Z, Feng, K, Liu, L., Extracting important information from Chinese Operation Notes with natural language processing methods (2014) J Biomed Inform, 48, pp. 130-136. , https://doi.org/10.1016/j.jbi.2013.12.017
dc.relation.referencesGrouin, C, Neveol, A., De-identification of clinical notes in French: towards a protocol for reference corpus development (2014) J Biomed Inform, 50, pp. 151-161. , https://doi.org/10.1016/j.jbi.2013.12.014
dc.relation.referencesKovacevic, A, Dehghan, A, Filannino, M, Keane, JA, Nenadic, G., Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives (2013) J Am Med Inform Assoc, 20 (5), pp. 859-866. , https://doi.org/10.1136/amiajnl-2013-001625
dc.relation.referencesXiong, Y, Peng, H, Xiang, Y, Wong, KC, Chen, Q, Yan, J, Leveraging Multi-source knowledge for Chinese clinical named entity recognition via relational graph convolutional network (2022) J Biomed Inform, 128, p. 104035. , https://doi.org/10.1016/j.jbi.2022.104035
dc.relation.referencesJiale, N, Gao, D, Sun, Y, Li, X, Shen, X, Li, M, Surgical procedure long terms recognition from Chinese literature incorporating structural feature (2022) Heliyon, 8 (11), p. e11291. , https://doi.org/10.1016/j.heliyon.2022.e11291
dc.relation.referencesHassanpour, S, Langlotz, CP., Information extraction from multi-institutional radiology reports (2016) Artif Intell Med, 66, pp. 29-39. , https://doi.org/10.1016/j.artmed.2015.09.007
dc.relation.referencesHuang, Z, Xu, W, Yu, K., (2015) Bidirectional LSTM-CRF models for sequence tagging [Internet], , https://arxiv.org/abs/1508.01991, Ithaca (NY): arXiv. org
dc.relation.references[cited at 2023 Sep 30]
dc.relation.referencesZhang, X, Zhang, Y, Zhang, Q, Ren, Y, Qiu, T, Ma, J, Extracting comprehensive clinical information for breast cancer using deep learning methods (2019) Int J Med Inform, 132, p. 103985. , https://doi.org/10.1016/j.ijmedinf.2019.103985
dc.relation.referencesXu, J, Li, Z, Wei, Q, Wu, Y, Xiang, Y, Lee, HJ, Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text (2019) BMC Med Inform Decis Mak, 19, p. 236. , https://doi.org/10.1186/s12911-019-0937-2, (Suppl 5)
dc.relation.referencesLi, PL, Yuan, ZM, Tu, WN, Yu, K, Lu, DX., Medical knowledge extraction and analysis from electronic medical records using deep learning (2019) Chin Med Sci J, 34 (2), pp. 133-139. , https://doi.org/10.24920/003589
dc.relation.referencesSuarez-Paniagua, V, Rivera Zavala, RM, Segura-Bedmar, I, Martinez, P., A two-stage deep learning approach for extracting entities and relationships from medical texts (2019) J Biomed Inform, 99, p. 103285. , https://doi.org/10.1016/j.jbi.2019.103285
dc.relation.referencesWeegar, R, Perez, A, Casillas, A, Oronoz, M., Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches (2019) BMC Med Inform Decis Mak, 19, p. 274. , https://doi.org/10.1186/s12911-019-0981-y, (Suppl 7)
dc.relation.referencesJi, B, Liu, R, Li, S, Yu, J, Wu, Q, Tan, Y, A hybrid approach for named entity recognition in Chinese electronic medical record (2019) BMC Med Inform Decis Mak, 19, p. 64. , https://doi.org/10.1186/s12911-019-0767-2, (Suppl 2)
dc.relation.referencesWang, Q, Zhou, Y, Ruan, T, Gao, D, Xia, Y, He, P., Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition (2019) J Biomed Inform, 92, p. 103133. , https://doi.org/10.1016/j.jbi.2019.103133
dc.relation.referencesYin, M, Mou, C, Xiong, K, Ren, J., Chinese clinical named entity recognition with radical-level feature and self-attention mechanism (2019) J Biomed Inform, 98, p. 103289. , https://doi.org/10.1016/j.jbi.2019.103289
dc.relation.referencesAlex, B, Grover, C, Tobin, R, Sudlow, C, Mair, G, Whiteley, W., Text mining brain imaging reports (2019) J Biomed Semantics, 10, p. 23. , http://dx.doi.org/10.1186/s13326-019-0211-7, (Suppl 1)
dc.relation.referencesShi, X, Yi, Y, Xiong, Y, Tang, B, Chen, Q, Wang, X, Extracting entities with attributes in clinical text via joint deep learning (2019) J Am Med Inform Assoc, 26 (12), pp. 1584-1591. , https://doi.org/10.1093/jamia/ocz158
dc.relation.referencesWang, Y, Ananiadou, S, Tsujii, J., Improving clinical named entity recognition in Chinese using the graphical and phonetic feature (2019) BMC Med Inform Decis Mak, 19, p. 273. , https://doi.org/10.1186/s12911-019-0980-z, (Suppl 7)
dc.relation.referencesCasillas, A, Ezeiza, N, Goenaga, I, Perez, A, Soto, X., Mea- suring the effect of different types of unsupervised word representations on Medical Named Entity Recognition (2019) Int J Med Inform, 129, pp. 100-106. , https://doi.org/10.1016/j.ijmedinf.2019.05.022
dc.relation.referencesChen, Y, Zhou, C, Li, T, Wu, H, Zhao, X, Ye, K, Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training (2019) J Biomed Inform, 96, p. 103252. , https://doi.org/10.1016/j.jbi.2019.103252
dc.relation.referencesLiu, X, Zhou, Y, Wang, Z., Recognition and extraction of named entities in online medical diagnosis data based on a deep neural network (2019) J Vis Commun Image Represent, 60, pp. 1-15. , https://doi.org/10.1016/j.jvcir.2019.02.001
dc.relation.referencesLi, Z, Yang, J, Gou, X, Qi, X., Recurrent neural networks with segment attention and entity description for relation extraction from clinical texts (2019) Artif Intell Med, 97, pp. 9-18. , https://doi.org/10.1016/j.artmed.2019.04.003
dc.relation.referencesJuckett, DA, Kasten, EP, Davis, FN, Gostine, M., Concept detection using text exemplars aligned with a specialized ontology (2019) Data Knowl eng, 119, pp. 22-35. , https://doi.org/10.1016/j.datak.2018.11.002
dc.relation.referencesSu, J, Hu, J, Jiang, J, Xie, J, Yang, Y, He, B, Extraction of risk factors for cardiovascular diseases from Chinese electronic medical records (2019) Comput Methods Programs Biomed, 172, pp. 1-10. , https://doi.org/10.1016/j.cmpb.2019.01.007
dc.relation.referencesLi, L, Zhao, J, Hou, L, Zhai, Y, Shi, J, Cui, F., An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records (2019) BMC Med Inform Decis Mak, 19, p. 235. , https://doi.org/10.1186/s12911-019-0933-6, (Suppl 5)
dc.relation.referencesDong, X, Chowdhury, S, Qian, L, Li, X, Guan, Y, Yang, J, Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN (2019) PLoS One, 14 (5), p. e0216046. , https://doi.org/10.1371/journal.pone.0216046
dc.relation.referencesLin, CH, Hsu, KC, Liang, CK, Lee, TH, Liou, CW, Lee, JD, A disease-specific language representation model for cerebrovascular disease research (2021) Comput Methods Programs Biomed, 211, p. 106446. , https://doi.org/10.1016/j.cmpb.2021.106446
dc.relation.referencesMurugadoss, K, Rajasekharan, A, Malin, B, Agarwal, V, Bade, S, Anderson, JR, Building a best-in-class automated de-identification tool for electronic health records through ensemble learning (2021) Patterns (N Y), 2 (6), p. 100255. , https://doi.org/10.1016/j.patter.2021.100255
dc.relation.referencesHarnoune, A, Rhanoui, M, Mikram, M, Yousfi, S, Elkaim-billah, Z, El Asri, B., BERT based clinical knowledge extraction for biomedical knowledge graph construction and analysis (2021) Comput Methods Programs Biomed Update, 1, p. 100042. , https://doi.org/10.1016/j.cmpbup.2021.100042
dc.relation.referencesNarayanan, S, Achan, P, Rangan, PV, Rajan, SP., Unified concept and assertion detection using contextual multitask learning in a clinical decision support system (2021) J Biomed Inform, 122, p. 103898. , https://doi.org/10.1016/j.jbi.2021.103898
dc.relation.referencesThieu, T, Maldonado, JC, Ho, PS, Ding, M, Marr, A, Brandt, D, A comprehensive study of mobility functioning information in clinical notes: entity hierarchy, corpus annotation, and sequence labeling (2021) Int J Med Inform, 147, p. 104351. , https://doi.org/10.1016/j.ijmedinf.2020.104351liu
dc.relation.referencesLiu, X, Liu, Y, Wu, H, Guan, Q., A tag based joint extraction model for Chinese medical text (2021) Comput Biol Chem, 93, p. 107508. , https://doi.org/10.1016/j.compbiolchem.2021.107508
dc.relation.referencesPuccetti, G, Chiarello, F, Fantoni, G., A simple and fast method for Named Entity context extraction from patents (2021) Expert Syst Appl, 184, p. 115570. , https://doi.org/10.1016/j.eswa.2021.115570
dc.relation.referencesEl-allaly, ED, Sarrouti, M, En-Nahnahi, N, El Alaoui, SO., MTTLADE: a multi-task transfer learning-based method for adverse drug events extraction (2021) Inf Process Manag, 58 (3), p. 102473. , https://doi.org/10.1016/j.ipm.2020.102473
dc.relation.referencesUronen, L, Salantera, S, Hakala, K, Hartiala, J, Moen, H., Combining supervised and unsupervised named entity recognition to detect psychosocial risk factors in occupational health checks (2022) Int J Med Inform, 160, p. 104695. , https://doi.org/10.1016/j.ijmedinf.2022.104695
dc.relation.referencesXiong, Y, Peng, W, Chen, Q, Huang, Z, Tang, B., A unified machine reading comprehension framework for cohort selection (2022) IEEE J Biomed Health Inform, 26 (1), pp. 379-387. , https://doi.org/10.1109/jbhi.2021.3095478
dc.relation.referencesZhang, B, Liu, K, Wang, H, Li, M, Pan, J., Chinese named-entity recognition via self-attention mechanism and position-aware influence propagation embedding (2022) Data Knowl eng, 139, p. 101983. , https://doi.org/10.1016/j.datak.2022.101983
dc.relation.referencesLandolsi, MY, Ben, Romdhane L, Hlaoua, L., Medical named entity recognition using surrounding sequences matching (2022) Procedia Comput Sci, 207, pp. 674-683. , https://doi.org/10.1016/j.procs.2022.09.122
dc.relation.referencesShi, J, Sun, M, Sun, Z, Li, M, Gu, Y, Zhang, W., Multi-level semantic fusion network for Chinese medical named entity recognition (2022) J Biomed Inform, 133, p. 104144. , https://doi.org/10.1016/j.jbi.2022.104144
dc.relation.referencesGerardin, C, Wajsburt, P, Vaillant, P, Bellamine, A, Carrat, F, Tannier, X., Multilabel classification of medical concepts for patient clinical profile identification (2022) Artif Intell Med, 128, p. 102311. , https://doi.org/10.1016/j.artmed.2022.102311
dc.relation.referencesMadan, S, Julius Zimmer, F, Balabin, H, Schaaf, S, Frohlich, H, Fluck, J, Deep learning-based detection of psychiatric attributes from German mental health records (2022) Int J Med Inform, 161, p. 104724. , https://doi.org/10.1016/j.ijmedinf.2022.104724
dc.relation.referencesNarayanan, S, Madhuri, SS, Ramesh, MV, Rangan, PV, Rajan, SP., Deep contextual multi-task feature fusion for enhanced concept, negation and speculation detection from clinical notes (2022) Informatics Med Unlocked, 34, p. 101109. , https://doi.org/10.1016/j.imu.2022.101109
dc.relation.referencesAn, Y, Xia, X, Chen, X, Wu, FX, Wang, J., Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF (2022) Artif Intell Med, 127, p. 102282. , https://doi.org/10.1016/j.artmed.2022.102282
dc.relation.referencesWang, SY, Huang, J, Hwang, H, Hu, W, Tao, S, Hernandez-Boussard, T., Leveraging weak supervision to perform named entity recognition in electronic health records progress notes to identify the ophthalmology exam (2022) Int J Med Inform, 167, p. 104864. , https://doi.org/10.1016/j.ijmedinf.2022.104864
dc.relation.referencesNarayanan, S, Mannam, K, Achan, P, Ramesh, MV, Rangan, PV, Rajan, SP., A contextual multi-task neural approach to medication and adverse events identification from clinical text (2022) J Biomed Inform, 125, p. 103960. , https://doi.org/10.1016/j.jbi.2021.103960
dc.relation.referencesEl-Allaly, ED, Sarrouti, M, En-Nahnahi, N, Ouatik El Alaoui, S., An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation (2022) J Biomed Inform, 125, p. 103968. , https://doi.org/10.1016/j.jbi.2021.103968
dc.relation.referencesSun, J, Liu, Y, Cui, J, He, H., Deep learning-based methods for natural hazard named entity recognition (2022) Sci Rep, 12 (1), p. 4598. , https://doi.org/10.1038/s41598-022-08667-2
dc.relation.referencesFang, A, Hu, J, Zhao, W, Feng, M, Fu, J, Feng, S, Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records (2022) BMC Med Inform Decis Mak, 22 (1), p. 72. , https://doi.org/10.1186/s12911-022-01810-z
dc.relation.referencesZhou, S, Wang, N, Wang, L, Liu, H, Zhang, R., Cancer-BERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records (2022) J Am Med Inform Assoc, 29 (7), pp. 1208-1216. , https://doi.org/10.1093/jamia/ocac040
dc.relation.referencesGuo, S, Yang, W, Han, L, Song, X, Wang, G., A multi-layer soft lattice based model for Chinese clinical named entity recognition (2022) BMC Med Inform Decis Mak, 22 (1), p. 201. , https://doi.org/10.1186/s12911-022-01924-4
dc.relation.referencesLee, EB, Heo, GE, Choi, CM, Song, M., MLM-based typo-graphical error correction of unstructured medical texts for named entity recognition (2022) BMC Bioinformatics, 23 (1), p. 486. , https://doi.org/10.1186/s12859-022-05035-9
dc.relation.referencesVaswani, A, Shazeer, N, Parmar, N, Uszkoreit, J, Jones, L, Gomez, AN, Attention is all you need (2017) Adv Neural Inf Process Syst, 30, pp. 5999-6009
dc.relation.referencesXu, Y, Wang, Y, Liu, T, Liu, J, Fan, Y, Qian, Y, Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries (2014) J Am Med Inform Assoc, 21 (e1), pp. e84-e92. , https://doi.org/10.1136/amiajnl-2013-001806
dc.relation.referencesLee, J, Yoon, W, Kim, S, Kim, D, Kim, S, So, CH, BioBERT: a pre-trained biomedical language representation model for biomedical text mining (2020) Bioinformatics, 36 (4), pp. 1234-1240. , https://doi.org/10.48550/arXiv.1901.08746
dc.relation.referencesPeng, Y, Yan, S, Lu, Z., (2019) Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets [Internet], , https://arxiv.org/abs/1906.05474, Ithaca (NY): arXiv.org
dc.relation.references[cited at 2023 Sep 30]
dc.relation.referencesJi, B, Li, S, Yu, J, Ma, J, Tang, J, Wu, Q, Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models (2020) J Biomed Inform, 104, p. 103395
dc.relation.referencesSterckx, L, Vandewiele, G, Dehaene, I, Janssens, O, Ongenae, F, De Backere, F, Clinical information extraction for preterm birth risk prediction (2020) J Biomed Inform, 110, p. 103544. , https://doi.org/10.1016/j.jbi.2020.103395
dc.relation.referencesKormilitzin, A, Vaci, N, Liu, Q, Nevado-Holgado, A., Med7: a transferable clinical natural language processing model for electronic health records (2021) Artif Intell Med, 118, p. 102086. , https://doi.org/10.1016/j.artmed.2021.102086
dc.relation.referencesWei, Q, Ji, Z, Li, Z, Du, J, Wang, J, Xu, J, A study of deep learning approaches for medication and adverse drug event extraction from clinical text (2020) J Am Med In- form Assoc, 27 (1), pp. 13-21. , https://doi.org/10.1093/jamia/ocz063
dc.relation.referencesKhan, S, Shamsi, JA., Health Quest: a generalized clinical decision support system with multi-label classification (2021) J King Saud Univ–Comput Inf Sci, 33 (1), pp. 45-53. , https://doi.org/10.1016/j.jksuci.2018.11.003
dc.relation.referencesLin, WC, Chen, JS, Kaluzny, J, Chen, A, Chiang, MF, Hribar, MR., Extraction of active medications and adherence using natural language processing for glaucoma patients (2021) AMIA Annu Symp Proc, 2021, pp. 773-782
dc.relation.referencesDai, HJ., Family member information extraction via neural sequence labeling models with different tag schemes (2019) BMC Med Inform Decis Mak, 19, p. 257. , (Suppl 10)
dc.relation.referencesChen, L, Li, Y, Chen, W, Liu, X, Yu, Z, Zhang, S., Utilizing soft constraints to enhance medical relation extraction from the history of present illness in electronic medical records (2018) J Biomed Inform, 87, pp. 108-117
dc.relation.referencesDai, HJ, Su, CH, Wu, CS., Adverse drug event and medication extraction in electronic health records via a cascading architecture with different sequence labeling models and word embeddings (2020) J Am Med Inform Assoc, 27 (1), pp. 47-55. , https://doi.org/10.1093/jamia/ocz120
dc.relation.referencesYang, X, Bian, J, Fang, R, Bjarnadottir, RI, Hogan, WR, Wu, Y., Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting (2020) J Am Med Inform Assoc, 27 (1), pp. 65-72. , https://doi.org/10.1093/jamia/ocz144
dc.relation.referencesLi, L, Xu, W, Yu, H., Character-level neural network model based on Nadam optimization and its application in clinical concept extraction (2020) Neurocomputing, 414, pp. 182-190. , https://doi.org/10.1016/j.neucom.2020.07.027
dc.relation.referencesZhang, R, Zhao, P, Guo, W, Wang, R, Lu, W., Medical named entity recognition based on dilated convolutional neural network (2022) Cogn Robot, 2, pp. 13-20. , https://doi.org/10.1016/j.cogr.2021.11.002
dc.relation.referencesCheng, Y, Anick, P, Hong, P, Xue, N., Temporal relation discovery between events and temporal expressions identified in clinical narrative (2013) J Biomed Inform, 46, pp. S48-S53. , https://doi.org/10.1016/j.jbi.2013.09.010, Suppl
dc.relation.referencesLiu, Z, Yang, M, Wang, X, Chen, Q, Tang, B, Wang, Z, Entity recognition from clinical texts via recurrent neural network (2017) BMC Med Inform Decis Mak, 17, p. 67. , https://doi.org/10.1186%2Fs12911-017-0468-7, (Suppl 2)
dc.relation.referencesKochmar, E, Andersen, O, Briscoe, T., HOO 2012 error recognition and correction shared task: Cambridge University submission report (2012) Proceedings of the 7th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 242-250. , https://doi.org/10.17863/CAM.9671, Jun 7
dc.relation.referencesMontreal, Canada
dc.relation.referencesZhao, S, Cai, Z, Chen, H, Wang, Y, Liu, F, Liu, A., Adversarial training based lattice LSTM for Chinese clinical named entity recognition (2019) J Biomed Inform, 99, p. 103290. , https://doi.org/10.1016/j.jbi.2019.103290
dc.relation.referencesYu, G, Yang, Y, Wang, X, Zhen, H, He, G, Li, Z, Adversarial active learning for the identification of medical concepts and annotation inconsistency (2020) J Biomed Inform, 108, p. 103481. , https://doi.org/10.1016/j.jbi.2020.103481
dc.relation.referencesWang, C, Wang, H, Zhuang, H, Li, W, Han, S, Zhang, H, Chinese medical named entity recognition based on multi-granularity semantic dictionary and multimodal tree (2020) J Biomed Inform, 111, p. 103583. , https://doi.org/10.1016/j.jbi.2020.103583
dc.relation.referencesChen, X, Ouyang, C, Liu, Y, Bu, Y., Improving the named entity recognition of Chinese electronic medical records by combining domain dictionary and rules (2020) Int J Environ Res Public Health, 17 (8), p. 2687. , https://doi.org/10.3390/ijerph17082687
dc.relation.referencesKersloot, MG, Lau, F, Abu-Hanna, A, Arts, DL, Cornet, R., Automated SNOMED CT concept and attribute relationship detection through a web-based implementation of cTAKES (2019) J Biomed Semantics, 10 (1), p. 14. , https://doi.org/10.1186/s13326-019-0207-3
dc.relation.referencesChristopoulou, F, Tran, TT, Sahu, SK, Miwa, M, Ananiadou, S., Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods (2020) J Am Med Inform Assoc, 27 (1), pp. 39-46
dc.relation.referencesHu, Y, Ameer, I, Zuo, W, Peng, X, Zhou, Y, Li, Z, (2023) Zero-shot clinical entity recognition using ChatGPT [Internet], , https://arxiv.org/abs/2303.16416, Ithaca (NY): arXiv.org
dc.relation.references[cited at 2023 Sep 30]
dc.relation.referencesLi, X, Zhu, X, Ma, Z, Liu, X, Shas, S., (2023) Are ChatGPT and GPT-4 general-purpose solvers for financial text analytics? An examination on several typical tasks [Internet], , https://arxiv.org/abs/2305.05862, Ithaca (NY): arXiv.org
dc.relation.references[cited at 2023 Sep 30]
dc.relation.referencesLai, VD, Ngo, NT, Veyseh, AP, Man, H, Dernoncourt, F, Bui, T, (2023) ChatGPT beyond english: towards a comprehensive evaluation of large language models in multilingual learning [Internet], , https://arxiv.org/abs/2304.05613, Ithaca (NY): arXiv.org
dc.relation.references[cited at 2023 Sep 30]
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record