Show simple item record

dc.contributor.authorTuriján-Clara B
dc.contributor.authorCorrea J.D
dc.contributor.authorMora-Ramos M.E
dc.contributor.authorDuque C.A.
dc.date.accessioned2024-07-31T21:07:21Z
dc.date.available2024-07-31T21:07:21Z
dc.date.created2023
dc.identifier.issn24103896
dc.identifier.urihttp://hdl.handle.net/11407/8550
dc.descriptionRecently, 2D phosphorus allotropes have arisen as possible candidates for technological applications among the family of the so-called Xene layered materials. In particular, the energy band structure of blue phosphorene (BP) exhibits a medium-size semiconductor gap that tends to widen in the case of using this material in the form of ribbons. BP nanoribbons have attracted recent interest for their implication in the improvement in efficiency of novel solar cells. On the other hand, compound poly (3-hexylthiophene) (P3HT) is used as the semiconducting core of organic field effect transistors owing to such useful features as high carrier mobility. Here, we theoretically investigate the electronic properties of a heterostructure combination of BP—in the form of nanoribbons—with a P3HT polymer chain on top in order to identify the features of band alignment. The work is performed using first principles calculations via DFT, employing different exchange correlation approaches for comparison: PBE, HSE06 and DFT-1/2. It is found that, under DFT-1/2, such a heterostructure has a type-II band alignment. © 2023 by the authors.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85172880461&doi=10.3390%2fcondmat8030074&partnerID=40&md5=dc9e3e5295105a4ca6a5a677c367e4be
dc.sourceCondensed Matter
dc.sourceCondens. Matter
dc.sourceScopus
dc.subjectBlue phosphoreneeng
dc.subjectDFTeng
dc.subjectNanoribbonseng
dc.subjectP3HTeng
dc.titleProperties of Blue Phosphorene Nanoribbon-P3HT Polymer Heterostructures: DFT First Principles Calculationseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo
dc.identifier.doi10.3390/condmat8030074
dc.relation.citationvolume8
dc.relation.citationissue3
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationTuriján-Clara, B., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 053108, Colombia
dc.affiliationMora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico
dc.affiliationDuque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia
dc.relation.referencesGeim, A., Novoselov, K., The rise of graphene (2007) Nat. Mater, 6, pp. 183-191. , 17330084
dc.relation.referencesNovoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A., Two-dimensional atomic crystals (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 10451-10453. , 16027370
dc.relation.referencesGrazianetti, C., Molle, A., Introduction (2022) Xenes, pp. xxi-xxx. , Molle A., Grazianetti C., (eds), Woodhead Publishing Series Electronic and Optical Materials, Woodhead Publishing, Cambridge, UK
dc.relation.referencesGrazianetti, C., Martella, C., The Rise of the Xenes: From the Synthesis to the Integration Processes for Electronics and Photonics (2021) Materials, 14. , 34361369
dc.relation.referencesKaur, S., Kumar, A., Srivastava, S., Tankeshwar, K., Electronic structure engineering of various structural phases of phosphorene (2016) Phys. Chem. Chem. Phys, 18, pp. 18312-18322
dc.relation.referencesZhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett, 112, p. 176802
dc.relation.referencesZhang, J., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett, 16, pp. 4903-4908
dc.relation.referencesHan, N., Gao, N., Zhao, J., Initial Growth Mechanism of Blue Phosphorene on Au(111) Surface (2017) J. Phys. Chem. C, 121, pp. 17893-17899
dc.relation.referencesZhuang, J., Liu, C., Gao, Q., Liu, Y., Feng, H., Xu, X., Wang, J., Hu, Z., Bandgap Modulated by Electronic Superlattice in Blue Phosphorene (2018) ACS Nano, 12, pp. 5059-5065
dc.relation.referencesZhang, W., Enriquez, H., Mayne, A.J., Bendounan, A., Seitsonen, A., Kara, A., Dujardin, G., Oughaddou, H., First steps of blue phosphorene growth on Au(111) (2021) Mater. Today Proc, 39, pp. 1153-1156
dc.relation.referencesShaikh, G.A., Raval, D., Babariya, B., Gupta, S., Gajjar, P., An ab-initio study of blue phosphorene monolayer: Electronic, vibrational and optical properties (2021) Mater. Today Proc, 47, pp. 576-579
dc.relation.referencesTyagi, S., Rout, P., Schwingenschlogl, U., High-performance junction-free field-effect transistor based on blue phosphorene (2022) npj 2D Mater. Appl, 6, p. 86
dc.relation.referencesHe, C., Xu, S., Dong, X., He, C., Hu, X., Liu, G., Xu, H., Step-guided epitaxial growth of blue phosphorene on vicinal Ag(111) (2023) Phys. Rev. Mater, 7, p. 034003
dc.relation.referencesXie, J., Si, M., Yang, D., Zhang, Z., Xue, D., A theoretical study of blue phosphorene nanoribbons based on first-principles calculations (2014) J. Appl. Phys, 116, p. 073704
dc.relation.referencesLiu, Y., Zhang, X., Yang, X., Hong, X., Feng, J., Si, M., Wang, X., Spin caloritronics of blue phosphorene nanoribbons (2015) Phys. Chem. Chem. Phys, 17, pp. 10462-10467. , 25801010
dc.relation.referencesOspina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci, 135, pp. 43-53
dc.relation.referencesXiong, P.Y., Chen, S.Z., Zhou, W.X., Chen, K.Q., Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons (2017) Phys. Lett. A, 381, pp. 2016-2020
dc.relation.referencesSwaroop, R., Ahluwalia, P., Tankeshwar, K., Kumar, A., Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics (2017) RSC Adv, 7, pp. 2992-3002
dc.relation.referencesAn, Y., Sun, Y., Zhang, M., Jiao, J., Wu, D., Wang, T., Wang, K., Tuning the Electronic Structures and Transport Properties of Zigzag Blue Phosphorene Nanoribbons (2018) IEEE Trans. Electron Devices, 65, pp. 4646-4651
dc.relation.referencesDey, A., Chakraborty, D., engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration (2021) J. Nanosci. Nanotechnol, 21, pp. 5929-5936
dc.relation.referencesSaravanan, S., Nagarajan, V., Srivastava, A., Chandiramouli, R., Blue phosphorene nanoribbon for detection of chloroform vapours—A first-principles study (2019) Int. J. Environ. Anal. Chem, 101, pp. 1697-1709
dc.relation.referencesMaibam, A., Chakraborty, D., Joshi, K., Krishnamurty, S., Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting (2021) New J. Chem, 45, pp. 3570-3580
dc.relation.referencesMacdonald, T., Clancy, A., Xu, W., Jiang, Z., Lin, C.T., Mohan, L., Du, T., Min, G., Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction (2021) J. Am. Chem. Soc, 143, pp. 21549-21559. , 34919382
dc.relation.referencesSun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci, 356, pp. 110-114
dc.relation.referencesDing, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: A first-principles study (2015) J. Phys. Chem. C, 119, pp. 10610-10622
dc.relation.referencesSun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Sol. Stat. Commun, 242, pp. 36-40
dc.relation.referencesBai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Sol. Stat. Commun, 270, pp. 76-81
dc.relation.referencesArif Khalil, R., Hussain, F., Hussain, M., Parveen, A., Imran, M., Murtaza, G., Sattar, M., Kim, S., The investigation of optoelectronic, magnetic and dynamical properties of Ce and Ti doped 2D blue phosphorene: A dispersion corrected DFT study (2020) J. Alloys Compd, 827, p. 154255
dc.relation.referencesCorrea, J., First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons (2019) Superlattices Microstruct, 130, pp. 401-408
dc.relation.referencesIhn, K., Moulton, J., Smith, P., Whiskers of poly(3-alkylthiophene)s (1993) J. Polym. Sci. B Polym. Phys, 31, pp. 735-742
dc.relation.referencesJian, L., Bao, X., Uchida, Y., Liu, J., Kathuria, Y., Furuhashi, H., Uchida, Y., Blue spectral shift of P3HT organic film by KrF excimer laser ablation (2009) Proceedings of the 2009 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Integration, 7509, p. 75090F. , Zhang X., Bock W., Lu X., Ming H., (eds), Shanghai, China, 19–21 October 2009, International Society for Optics and Photonics, Bellingham, WA, USA
dc.relation.referencesMoulé, A.J., Neher, D., Turner, S., P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance (2014) P3HT Revisited—From Molecular Scale to Solar Cell Devices, pp. 181-232. , Ludwigs S., (ed), Springer, Berlin/Heidelberg, Germany
dc.relation.referencesEl Gemayel, M., Narita, A., Dössel, L.F., Sundaram, R.S., Kiersnowski, A., Pisula, W., Hansen, M.R., Feng, X., Graphene nanoribbon blends with P3HT for organic electronics (2014) Nanoscale, 6, pp. 6301-6314
dc.relation.referencesTiwari, S., Verma, R., Alam, M., Kumari, R., Sinha, O., Srivastava, R., Charge transport study of P3HT blended MoS2 (2017) Vacuum, 146, pp. 474-477
dc.relation.referencesGutiérrez-González, I., Molina-Brito, B., Götz, A.W., Castillo-Alvarado, F., Rodríguez, J.I., Structural and electronic properties of the P3HT–PCBM dimer: A theoretical Study (2014) Chem. Phys. Lett, 612, pp. 234-239
dc.relation.referencesRoy, J.K., Kar, S., Leszczynski, J., Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells (2019) Materials, 12. , 31315218
dc.relation.referencesNguyen, T.P., Shim, J.H., Hybrid density functional study on the electronic structures and properties of P3HT-PbS and P3HT-CdS hybrid interface for photovoltaic applications (2018) J. Comput. Chem, 39, pp. 1990-1999. , 30315588
dc.relation.referencesGarcia-Basabe, Y., Orsi Gordo, V., Daminelli, L., Mendoza, C.D., Vicentin, F., Matusalem, F., Rocha, A., Larrudé, D., Interfacial electronic coupling and band alignment of P3HT and exfoliated black phosphorous van der Waals heterojunctions (2021) Appl. Surf. Sci, 541, p. 148455
dc.relation.referencesFerreira, L., Marques, M., Teles, L., Approximation to density functional theory for the calculation of band gaps of semiconductors (2008) Phys. Rev. B, 78, p. 125116
dc.relation.referencesFerreira, L., Marques, M., Teles, L., Slater half-occupation technique revisited: The LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors (2011) AIP Adv, 1, p. 032119
dc.relation.referencesSlater, J., Johnson, K., Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids (1972) Phys. Rev. B, 5, pp. 844-853
dc.relation.referencesSlater, J., Statistical Exchange-Correlation in the Self-Consistent Field (1972) Adv. Quantum Chem, 6, pp. 1-92
dc.relation.referencesSoler, J., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745
dc.relation.referencesArtacho, E., Anglada, E., Diéguez, O., Gale, J., García, A., Junquera, J., Martin, R., Sánchez-Portal, D., The SIESTA method
dc.relation.referencesdevelopments and applicability (2008) J. Phys. Condens. Matter, 20, p. 064208. , 21693870
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868. , 10062328
dc.relation.referencesHeyd, J., Scuseria, G.E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional (2004) J. Chem. Phys, 121, pp. 1187-1192. , 15260659
dc.relation.referencesHeyd, J., Peralta, J.E., Scuseria, G.E., Martin, R.L., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional (2005) J. Chem. Phys, 123, p. 174101. , 16375511
dc.relation.referencesHeyd, J., Scuseria, G.E., Ernzerhof, M., Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] (2006) J. Chem. Phys, 124, p. 219906
dc.relation.referencesMortensen, J.J., Hansen, L.B., Jacobsen, K.W., Real-space grid implementation of the projector augmented wave method (2005) Phys. Rev. B, 71, p. 035109
dc.relation.referencesEnkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Hansen, H.A., Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method (2010) J. Phys. Condens. Matter, 22, p. 253202
dc.relation.referencesMarsman, M., Paier, J., Stroppa, A., Kresse, G., Hybrid functionals applied to extended systems (2008) J. Phys. Condens. Matter, 20, p. 064201
dc.relation.referencesAnsari, M.A., Mohiuddin, S., Kandemirli, F., Malik, M.I., Synthesis and characterization of poly(3-hexylthiophene): Improvement of regioregularity and energy band gap (2018) RSC Adv, 8, pp. 8319-8328
dc.relation.referencesKucur, E., Riegler, J., Urban, G.A., Nann, T., Charge transfer mechanism in hybrid bulk heterojunction composites (2004) J. Chem. Phys, 120, pp. 1500-1505
dc.relation.referencesCook, S., Katoh, R., Furube, A., Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM (2009) J. Phys. Chem. C, 113, pp. 2547-2552
dc.relation.referencesZhang, S., Xie, M., Li, F., Yan, Z., Li, Y., Kan, E., Liu, W., Zeng, H., Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities (2016) Angew. Chem. Int. Ed, 55, pp. 1666-1669. , 26671733
dc.relation.referencesZhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zeng, H., Recent progress in 2D group-VA semiconductors: From theory to experiment (2018) Chem. Soc. Rev, 47, pp. 982-1021. , 29210397
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record