dc.contributor.author | Turiján-Clara B | |
dc.contributor.author | Correa J.D | |
dc.contributor.author | Mora-Ramos M.E | |
dc.contributor.author | Duque C.A. | |
dc.date.accessioned | 2024-07-31T21:07:21Z | |
dc.date.available | 2024-07-31T21:07:21Z | |
dc.date.created | 2023 | |
dc.identifier.issn | 24103896 | |
dc.identifier.uri | http://hdl.handle.net/11407/8550 | |
dc.description | Recently, 2D phosphorus allotropes have arisen as possible candidates for technological applications among the family of the so-called Xene layered materials. In particular, the energy band structure of blue phosphorene (BP) exhibits a medium-size semiconductor gap that tends to widen in the case of using this material in the form of ribbons. BP nanoribbons have attracted recent interest for their implication in the improvement in efficiency of novel solar cells. On the other hand, compound poly (3-hexylthiophene) (P3HT) is used as the semiconducting core of organic field effect transistors owing to such useful features as high carrier mobility. Here, we theoretically investigate the electronic properties of a heterostructure combination of BP—in the form of nanoribbons—with a P3HT polymer chain on top in order to identify the features of band alignment. The work is performed using first principles calculations via DFT, employing different exchange correlation approaches for comparison: PBE, HSE06 and DFT-1/2. It is found that, under DFT-1/2, such a heterostructure has a type-II band alignment. © 2023 by the authors. | |
dc.language.iso | eng | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172880461&doi=10.3390%2fcondmat8030074&partnerID=40&md5=dc9e3e5295105a4ca6a5a677c367e4be | |
dc.source | Condensed Matter | |
dc.source | Condens. Matter | |
dc.source | Scopus | |
dc.subject | Blue phosphorene | eng |
dc.subject | DFT | eng |
dc.subject | Nanoribbons | eng |
dc.subject | P3HT | eng |
dc.title | Properties of Blue Phosphorene Nanoribbon-P3HT Polymer Heterostructures: DFT First Principles Calculations | eng |
dc.type | article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo | |
dc.identifier.doi | 10.3390/condmat8030074 | |
dc.relation.citationvolume | 8 | |
dc.relation.citationissue | 3 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Turiján-Clara, B., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 053108, Colombia | |
dc.affiliation | Mora-Ramos, M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, Cuernavaca, CP 62209, Mexico | |
dc.affiliation | Duque, C.A., Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 050010, Colombia | |
dc.relation.references | Geim, A., Novoselov, K., The rise of graphene (2007) Nat. Mater, 6, pp. 183-191. , 17330084 | |
dc.relation.references | Novoselov, K., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., Geim, A., Two-dimensional atomic crystals (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 10451-10453. , 16027370 | |
dc.relation.references | Grazianetti, C., Molle, A., Introduction (2022) Xenes, pp. xxi-xxx. , Molle A., Grazianetti C., (eds), Woodhead Publishing Series Electronic and Optical Materials, Woodhead Publishing, Cambridge, UK | |
dc.relation.references | Grazianetti, C., Martella, C., The Rise of the Xenes: From the Synthesis to the Integration Processes for Electronics and Photonics (2021) Materials, 14. , 34361369 | |
dc.relation.references | Kaur, S., Kumar, A., Srivastava, S., Tankeshwar, K., Electronic structure engineering of various structural phases of phosphorene (2016) Phys. Chem. Chem. Phys, 18, pp. 18312-18322 | |
dc.relation.references | Zhu, Z., Tománek, D., Semiconducting layered blue phosphorus: A computational study (2014) Phys. Rev. Lett, 112, p. 176802 | |
dc.relation.references | Zhang, J., Zhao, S., Han, C., Wang, Z., Zhong, S., Sun, S., Guo, R., Yuan, K., Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus (2016) Nano Lett, 16, pp. 4903-4908 | |
dc.relation.references | Han, N., Gao, N., Zhao, J., Initial Growth Mechanism of Blue Phosphorene on Au(111) Surface (2017) J. Phys. Chem. C, 121, pp. 17893-17899 | |
dc.relation.references | Zhuang, J., Liu, C., Gao, Q., Liu, Y., Feng, H., Xu, X., Wang, J., Hu, Z., Bandgap Modulated by Electronic Superlattice in Blue Phosphorene (2018) ACS Nano, 12, pp. 5059-5065 | |
dc.relation.references | Zhang, W., Enriquez, H., Mayne, A.J., Bendounan, A., Seitsonen, A., Kara, A., Dujardin, G., Oughaddou, H., First steps of blue phosphorene growth on Au(111) (2021) Mater. Today Proc, 39, pp. 1153-1156 | |
dc.relation.references | Shaikh, G.A., Raval, D., Babariya, B., Gupta, S., Gajjar, P., An ab-initio study of blue phosphorene monolayer: Electronic, vibrational and optical properties (2021) Mater. Today Proc, 47, pp. 576-579 | |
dc.relation.references | Tyagi, S., Rout, P., Schwingenschlogl, U., High-performance junction-free field-effect transistor based on blue phosphorene (2022) npj 2D Mater. Appl, 6, p. 86 | |
dc.relation.references | He, C., Xu, S., Dong, X., He, C., Hu, X., Liu, G., Xu, H., Step-guided epitaxial growth of blue phosphorene on vicinal Ag(111) (2023) Phys. Rev. Mater, 7, p. 034003 | |
dc.relation.references | Xie, J., Si, M., Yang, D., Zhang, Z., Xue, D., A theoretical study of blue phosphorene nanoribbons based on first-principles calculations (2014) J. Appl. Phys, 116, p. 073704 | |
dc.relation.references | Liu, Y., Zhang, X., Yang, X., Hong, X., Feng, J., Si, M., Wang, X., Spin caloritronics of blue phosphorene nanoribbons (2015) Phys. Chem. Chem. Phys, 17, pp. 10462-10467. , 25801010 | |
dc.relation.references | Ospina, D., Duque, C., Mora-Ramos, M., Correa, J., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A DFT study (2017) Comput. Mater. Sci, 135, pp. 43-53 | |
dc.relation.references | Xiong, P.Y., Chen, S.Z., Zhou, W.X., Chen, K.Q., Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons (2017) Phys. Lett. A, 381, pp. 2016-2020 | |
dc.relation.references | Swaroop, R., Ahluwalia, P., Tankeshwar, K., Kumar, A., Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics (2017) RSC Adv, 7, pp. 2992-3002 | |
dc.relation.references | An, Y., Sun, Y., Zhang, M., Jiao, J., Wu, D., Wang, T., Wang, K., Tuning the Electronic Structures and Transport Properties of Zigzag Blue Phosphorene Nanoribbons (2018) IEEE Trans. Electron Devices, 65, pp. 4646-4651 | |
dc.relation.references | Dey, A., Chakraborty, D., engineering the Band Structures of Zigzag Blue Phosphorene and Arsenene Nanoribbons by Incorporating Edge Corrugations: A First Principles Exploration (2021) J. Nanosci. Nanotechnol, 21, pp. 5929-5936 | |
dc.relation.references | Saravanan, S., Nagarajan, V., Srivastava, A., Chandiramouli, R., Blue phosphorene nanoribbon for detection of chloroform vapours—A first-principles study (2019) Int. J. Environ. Anal. Chem, 101, pp. 1697-1709 | |
dc.relation.references | Maibam, A., Chakraborty, D., Joshi, K., Krishnamurty, S., Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting (2021) New J. Chem, 45, pp. 3570-3580 | |
dc.relation.references | Macdonald, T., Clancy, A., Xu, W., Jiang, Z., Lin, C.T., Mohan, L., Du, T., Min, G., Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction (2021) J. Am. Chem. Soc, 143, pp. 21549-21559. , 34919382 | |
dc.relation.references | Sun, M., Tang, W., Ren, Q., Wang, S., Yu, J., Du, Y., A first-principles study of light non-metallic atom substituted blue phosphorene (2015) Appl. Surf. Sci, 356, pp. 110-114 | |
dc.relation.references | Ding, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: A first-principles study (2015) J. Phys. Chem. C, 119, pp. 10610-10622 | |
dc.relation.references | Sun, M., Hao, Y., Ren, Q., Zhao, Y., Du, Y., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation (2016) Sol. Stat. Commun, 242, pp. 36-40 | |
dc.relation.references | Bai, R., Chen, Z., Gou, M., Zhang, Y., A first-principles study of group IV and VI atoms doped blue phosphorene (2018) Sol. Stat. Commun, 270, pp. 76-81 | |
dc.relation.references | Arif Khalil, R., Hussain, F., Hussain, M., Parveen, A., Imran, M., Murtaza, G., Sattar, M., Kim, S., The investigation of optoelectronic, magnetic and dynamical properties of Ce and Ti doped 2D blue phosphorene: A dispersion corrected DFT study (2020) J. Alloys Compd, 827, p. 154255 | |
dc.relation.references | Correa, J., First principles calculations of opto-electronic properties of doped blue phosphorene nanoribbons (2019) Superlattices Microstruct, 130, pp. 401-408 | |
dc.relation.references | Ihn, K., Moulton, J., Smith, P., Whiskers of poly(3-alkylthiophene)s (1993) J. Polym. Sci. B Polym. Phys, 31, pp. 735-742 | |
dc.relation.references | Jian, L., Bao, X., Uchida, Y., Liu, J., Kathuria, Y., Furuhashi, H., Uchida, Y., Blue spectral shift of P3HT organic film by KrF excimer laser ablation (2009) Proceedings of the 2009 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Integration, 7509, p. 75090F. , Zhang X., Bock W., Lu X., Ming H., (eds), Shanghai, China, 19–21 October 2009, International Society for Optics and Photonics, Bellingham, WA, USA | |
dc.relation.references | Moulé, A.J., Neher, D., Turner, S., P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance (2014) P3HT Revisited—From Molecular Scale to Solar Cell Devices, pp. 181-232. , Ludwigs S., (ed), Springer, Berlin/Heidelberg, Germany | |
dc.relation.references | El Gemayel, M., Narita, A., Dössel, L.F., Sundaram, R.S., Kiersnowski, A., Pisula, W., Hansen, M.R., Feng, X., Graphene nanoribbon blends with P3HT for organic electronics (2014) Nanoscale, 6, pp. 6301-6314 | |
dc.relation.references | Tiwari, S., Verma, R., Alam, M., Kumari, R., Sinha, O., Srivastava, R., Charge transport study of P3HT blended MoS2 (2017) Vacuum, 146, pp. 474-477 | |
dc.relation.references | Gutiérrez-González, I., Molina-Brito, B., Götz, A.W., Castillo-Alvarado, F., Rodríguez, J.I., Structural and electronic properties of the P3HT–PCBM dimer: A theoretical Study (2014) Chem. Phys. Lett, 612, pp. 234-239 | |
dc.relation.references | Roy, J.K., Kar, S., Leszczynski, J., Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells (2019) Materials, 12. , 31315218 | |
dc.relation.references | Nguyen, T.P., Shim, J.H., Hybrid density functional study on the electronic structures and properties of P3HT-PbS and P3HT-CdS hybrid interface for photovoltaic applications (2018) J. Comput. Chem, 39, pp. 1990-1999. , 30315588 | |
dc.relation.references | Garcia-Basabe, Y., Orsi Gordo, V., Daminelli, L., Mendoza, C.D., Vicentin, F., Matusalem, F., Rocha, A., Larrudé, D., Interfacial electronic coupling and band alignment of P3HT and exfoliated black phosphorous van der Waals heterojunctions (2021) Appl. Surf. Sci, 541, p. 148455 | |
dc.relation.references | Ferreira, L., Marques, M., Teles, L., Approximation to density functional theory for the calculation of band gaps of semiconductors (2008) Phys. Rev. B, 78, p. 125116 | |
dc.relation.references | Ferreira, L., Marques, M., Teles, L., Slater half-occupation technique revisited: The LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors (2011) AIP Adv, 1, p. 032119 | |
dc.relation.references | Slater, J., Johnson, K., Self-Consistent-Field Xα Cluster Method for Polyatomic Molecules and Solids (1972) Phys. Rev. B, 5, pp. 844-853 | |
dc.relation.references | Slater, J., Statistical Exchange-Correlation in the Self-Consistent Field (1972) Adv. Quantum Chem, 6, pp. 1-92 | |
dc.relation.references | Soler, J., Artacho, E., Gale, J., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys. Condens. Matter, 14, p. 2745 | |
dc.relation.references | Artacho, E., Anglada, E., Diéguez, O., Gale, J., García, A., Junquera, J., Martin, R., Sánchez-Portal, D., The SIESTA method | |
dc.relation.references | developments and applicability (2008) J. Phys. Condens. Matter, 20, p. 064208. , 21693870 | |
dc.relation.references | Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett, 77, pp. 3865-3868. , 10062328 | |
dc.relation.references | Heyd, J., Scuseria, G.E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional (2004) J. Chem. Phys, 121, pp. 1187-1192. , 15260659 | |
dc.relation.references | Heyd, J., Peralta, J.E., Scuseria, G.E., Martin, R.L., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional (2005) J. Chem. Phys, 123, p. 174101. , 16375511 | |
dc.relation.references | Heyd, J., Scuseria, G.E., Ernzerhof, M., Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] (2006) J. Chem. Phys, 124, p. 219906 | |
dc.relation.references | Mortensen, J.J., Hansen, L.B., Jacobsen, K.W., Real-space grid implementation of the projector augmented wave method (2005) Phys. Rev. B, 71, p. 035109 | |
dc.relation.references | Enkovaara, J., Rostgaard, C., Mortensen, J.J., Chen, J., Dułak, M., Ferrighi, L., Gavnholt, J., Hansen, H.A., Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method (2010) J. Phys. Condens. Matter, 22, p. 253202 | |
dc.relation.references | Marsman, M., Paier, J., Stroppa, A., Kresse, G., Hybrid functionals applied to extended systems (2008) J. Phys. Condens. Matter, 20, p. 064201 | |
dc.relation.references | Ansari, M.A., Mohiuddin, S., Kandemirli, F., Malik, M.I., Synthesis and characterization of poly(3-hexylthiophene): Improvement of regioregularity and energy band gap (2018) RSC Adv, 8, pp. 8319-8328 | |
dc.relation.references | Kucur, E., Riegler, J., Urban, G.A., Nann, T., Charge transfer mechanism in hybrid bulk heterojunction composites (2004) J. Chem. Phys, 120, pp. 1500-1505 | |
dc.relation.references | Cook, S., Katoh, R., Furube, A., Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM (2009) J. Phys. Chem. C, 113, pp. 2547-2552 | |
dc.relation.references | Zhang, S., Xie, M., Li, F., Yan, Z., Li, Y., Kan, E., Liu, W., Zeng, H., Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities (2016) Angew. Chem. Int. Ed, 55, pp. 1666-1669. , 26671733 | |
dc.relation.references | Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zeng, H., Recent progress in 2D group-VA semiconductors: From theory to experiment (2018) Chem. Soc. Rev, 47, pp. 982-1021. , 29210397 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |