Show simple item record

dc.contributor.authorJimenez-Orozco C
dc.contributor.authorKoverga A
dc.contributor.authorFlórez E
dc.contributor.authorRodriguez J.A.
dc.date.accessioned2024-07-31T21:07:25Z
dc.date.available2024-07-31T21:07:25Z
dc.date.created2023
dc.identifier.urihttp://hdl.handle.net/11407/8569
dc.descriptionHeterogeneous catalysis is important for producing fuels and commodities, with several processes using platinoids (i.e., Pt, Pd, Os, Rh, Ru, and Ir) as core materials. However, the scarcity of these metals implies a strong limitation for their use at large scale in the long term. Tungsten carbide (WC) has been proposed as an alternative non- expensive catalytic material, and using it as a support for Pt, or as an active phase in several reactions, requires a better understanding of the fundamental origins of its catalytic properties. Thus, the WC and M/WC (M: transition metal) systems have been extensively studied as well- defined catalysts in the last years, using calculations from first principles to unveil their chemistry at the atomic level, where the knowledge gained is useful as a key and preliminary step in the design of technical catalysts. The theoretical studies offer a complete panorama as a bridge between theory and experiment, since they account for relevant variables such as surface coverage, temperature, and pressure conditions within the thermodynamics landscape, together with the establishment of reaction rates within a kinetic framework. The fundamental studies provide an understanding at the atomic level, identifying surface active sites, plus geometric and electronic properties which can be modulated to account for a desired catalytic activity, according to the applications. In many cases, the computations for WC and Pt/WC systems are performed using periodic Density Functional Theory (DFT), within the framework of solid-state physics. The conceptual topics and details of the methodology are fundamental, since they provide the basis for building technical catalysts and acquire relevant information. Therefore, it is quite relevant to explore the behavior of WC and Pt/WC under different chemical environments, together with their applications in several processes as heterogeneous catalysts. The current chapter covers applications of WC and M/WC (M=Pt, Pd, Ag, Au, Ni, Cu, Rh) as heterogeneous catalysts in several processes, including binding and transformation of key molecules (CO2, O2, CO, H2O, ethylene, acetylene, ethane, ethylidyne, hydrogen, methanol, ammonia, NOx, formic acid) in industrial operations linked to hydrogenation and hydrodeoxygenation reactions. The applications to electrocatalysis imply a particular connection experiment-theory in the fundamental understanding of several phenomena. Therefore, the Hydrogen Evolution Reaction (HER) involves experimental details regarding synthesis methods and how the experimental conditions affect the electrocatalytic performance of WC-based systems. The chapter ends with conclusions, including an outlook regarding the potential and future use of tungsten carbides in heterogeneous catalysis, together with the challenges and knowledge gained from the current fundamental understanding of several processes at the atomic level by computing models. © 2023 Nova Science Publishers, Inc. All rights reserved.
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85180273233&partnerID=40&md5=fcd50aed1aa36bb2109d346296812a1a
dc.sourceTungsten Carbides: Advances in Research and Applications
dc.sourceTungsten Carbides: Advances in Research and Applications
dc.sourceScopus
dc.subjectDFTeng
dc.subjectHeterogeneous catalysiseng
dc.subjectTungsten carbideeng
dc.titleTungsten carbide in heterogeneous catalysis: An application of theory to gain insights into catalytic processeseng
dc.typebook chapter
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaParte de libro
dc.relation.citationstartpage1
dc.relation.citationendpage84
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationJimenez-Orozco, C., Grupo de Materiales con Impacto (Matmpac), Universidad de Medellín, Medellín, Colombia
dc.affiliationKoverga, A., Grupo de Materiales con Impacto (Matmpac), Universidad de Medellín, Medellín, Colombia, Instituto de Quimica de São Carlos, Universidade de São Paulo, São Carlos, Brazil
dc.affiliationFlórez, E., Grupo de Materiales con Impacto (Matmpac), Universidad de Medellín, Medellín, Colombia
dc.affiliationRodriguez, J.A., Chemistry Division, Brookhaven National Laboratory, New York, United States
dc.relation.referencesAlvarez-Garcia, A., Flórez, E., Moreno, A., Jimenez-Orozco, C., CO2 activation on small Cu-Ni and Cu-Pd bimetallic clusters (2020) Molecular Catalysis, 484, p. 110733. , (September 2019)
dc.relation.referencesBernard d'Arbigny, J., Taillades, G., Rozière, J., Jones, D., Marrony, M., High Surface Area Tungsten Carbide with Novel Architecture and High Electrochemical Stability (2011) ECS Transactions, 41 (1), pp. 1207-1213
dc.relation.referencesBlöchl, P.E., Projector augmented-wave method (1994) Physical Review B, 50 (24), pp. 17953-17979
dc.relation.referencesBoopathy, G., Govindasamy, M., Nazari, M., Wang, S.-F., Umapathy, M.J., Facile Synthesis of Tungsten Carbide Nanosheets for Trace Level Detection of Toxic Mercury Ions in Biological and Contaminated Sewage Water Samples: An Electrocatalytic Approach (2019) Journal of The Electrochemical Society, 166 (10), pp. B761-B770
dc.relation.referencesBrillo, J., Hammoudeh, A., Kuhlenbeck, H., Panagiotides, N., Schwegmann, S., Over, H., Freund, H.-J., Structural studies of WC(0001) and the adsorption of benzene (1998) Journal of Electron Spectroscopy and Related Phenomena, 96 (1-3), pp. 53-60
dc.relation.referencesBrillo, J., Kuhlenbeck, H., Freund, H.-J., Interaction of O2 with WC(0001) (1998) Surface Science, 409 (2), pp. 199-206
dc.relation.referencesBrillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., Electron spectroscopic study of the interaction of WC(0001) with different adsorbates (C6H6, CO and NO) (1998) Journal of Electron Spectroscopy and Related Phenomena, 88-91, pp. 809-815
dc.relation.referencesBrillo, J., Sur, R., Kuhlenbeck, H., Freund, H.-J., Interaction of CO and NO with WC(0001) (1998) Surface Science, 397 (1-3), pp. 137-144
dc.relation.referencesCai, X., Hu, Y.H., Advances in catalytic conversion of methane and carbon dioxide to highly valuable products (2019) Energy Science & engineering, 7 (1), pp. 4-29
dc.relation.referencesChan-Thaw, C., Villa, A., Metal Carbides for Biomass Valorization (2018) Applied Sciences, 8 (2), p. 259
dc.relation.referencesChang, Q., Zhang, X., Yang, Z., First-principles study on the Cu-Au alloy monolayer supported on WC for hydrogen evolution (2021) Applied Surface Science, 565, p. 150568
dc.relation.referencesChen, J., Ren, B., Cui, H., Wang, C., Constructing Pure Phase Tungsten-Based Bimetallic Carbide Nanosheet as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting (2020) Small, 16 (23), p. 1907556
dc.relation.referencesChen, W.-F., Muckerman, J.T., Fujita, E., Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts (2013) Chemical Communications, 49 (79), p. 8896
dc.relation.referencesChen, X., Li, S., Sun, X., Liu, F., Li, C., Yu, J., Mu, S., Coupling low platinum and tungsten carbide supported on ZIFs-Derived porous carbon for efficient hydrogen evolution (2019) Electrochimica Acta, 328, p. 135077
dc.relation.referencesChen, Y., Zheng, Y., Yue, X., Huang, S., Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable nonprecious metal electrocatalysts (2020) International Journal of Hydrogen Energy, 45 (15), pp. 8695-8702
dc.relation.referencesChen, Z.-Y., Duan, L.-F., Sheng, T., Lin, X., Chen, Y.-F., Chu, Y.-Q., Lin, W.-F., Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions (2017) ACS Applied Materials & Interfaces, 9 (24), pp. 20594-20602
dc.relation.referencesClaridge, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvarez, C., Sloan, J., Tsang, S.C., Green, M.L.H., New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide (1998) Journal of Catalysis, 180 (1), pp. 85-100
dc.relation.referencesCzaplicka, N., Rogala, A., Wysocka, I., Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons-A Review (2021) International Journal of Molecular Sciences, 22 (22), p. 12337
dc.relation.referencesDa Costa, P., Lemberton, J.-L., Potvin, C., Manoli, J.-M., Perot, G., Breysse, M., Djega-Mariadassou, G., Tetralin hydrogenation catalyzed by Mo2C/Al2O3 and WC/Al2O3 in the presence of H2S (2001) Catalysis Today, 65 (2-4), pp. 195-200
dc.relation.referencesDang, J., Wu, Y., Lv, Z., Lv, X., Preparation of tungsten carbides by reducing and carbonizing WO2 with CO (2018) Journal of Alloys and Compounds, 745, pp. 421-429
dc.relation.referencesDecker, S., Löfberg, A., Bastin, J.-M., Frennet, A., Study of the preparation of bulk tungsten carbide catalysts with C2H6/H2 and C2H4/H2 carburizing mixtures (1997) Catalysis Letters, 44, pp. 229-239
dc.relation.referencesDelley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules (1990) The Journal of Chemical Physics, 92 (1), pp. 508-517
dc.relation.referencesDelley, B., (1995) DMol, a standard tool for density functional calculations: Review and advances
dc.relation.referencesDelley, B., From molecules to solids with the DMol3 approach (2000) The Journal of Chemical Physics, 113 (18), pp. 7756-7764
dc.relation.referencesEsposito, D.V., Chen, J.G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations (2011) Energy & Environmental Science, 4 (10), p. 3900
dc.relation.referencesEsposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., McCandless, B.E., Birkmire, R.W., Chen, J.G., Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates (2010) Angewandte Chemie International Edition, 49 (51), pp. 9859-9862
dc.relation.referencesEsposito, D.V., Hunt, S.T., Kimmel, Y.C., Chen, J.G., A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides (2012) Journal of the American Chemical Society, 134 (6), pp. 3025-3033
dc.relation.referencesFan, X., Zhou, H., Guo, X., WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction (2015) ACS Nano, 9 (5), pp. 5125-5134
dc.relation.referencesFang, H., Du, J., Tian, C., Zheng, J., Duan, X., Ye, L., Yuan, Y., Regioselective hydrogenolysis of aryl ether C-O bonds by tungsten carbides with controlled phase compositions (2017) Chemical Communications, 53 (74), pp. 10295-10298
dc.relation.referencesFang, H., Roldan, A., Tian, C., Zheng, Y., Duan, X., Chen, K., Yuan, Y., Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of C O bonds (2019) Journal of Catalysis, 369, pp. 283-295
dc.relation.referencesFang, H., Wu, L., Chen, W., Yuan, Y., Synergy of carbon defect and transition metal on tungsten carbides for boosting the selective cleavage of aryl ether C O bond (2021) Applied Catalysis A: General, 613, p. 118023
dc.relation.referencesFang, Y., Wu, M., Ci, S., Liu, Q., Zhao, X., Qian, P., Qu, X., First-principles simulations of the interface adhesion and wettability: Cu(111)/TiC(111) versus Cu(111)/WC(0001) (2022) Physica B: Condensed Matter, 646, p. 414336
dc.relation.referencesFrauwallner, M.L., López-Linares, F., Lara-Romero, J., Scott, C.E., Ali, V., Hernández, E., Pereira-Almao, P., Toluene hydrogenation at low temperature using a molybdenum carbide catalyst (2011) Applied Catalysis A: General, 394 (1-2), pp. 62-70
dc.relation.referencesFührer, M., van Haasterecht, T., Bitter, J.H., Cinnamaldehyde hydrogenation over carbon supported molybdenum and tungsten carbide catalysts (2022) Chemical Communications, 58 (98), pp. 13608-13611
dc.relation.referencesFurimsky, E., Metal carbides and nitrides as potential catalysts for hydroprocessing (2003) Applied Catalysis A: General, 240 (1-2), pp. 1-28
dc.relation.referencesGiannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials (2009) Journal of Physics: Condensed Matter, 21 (39), p. 395502
dc.relation.referencesGong, Q., Wang, Y., Hu, Q., Zhou, J., Feng, R., Duchesne, P.N., Lee, S.-T., Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution (2016) Nature Communications, 7 (1), p. 13216
dc.relation.referencesGonze, X., Amadon, B., Anglade, P.-M., Beuken, J.-M., Bottin, F., Boulanger, P., Zwanziger, J.W., ABINIT: First-principles approach to material and nanosystem properties (2009) Computer Physics Communications, 180 (12), pp. 2582-2615
dc.relation.referencesGorey, T.J., Zandkarimi, B., Li, G., Baxter, E.T., Alexandrova, A.N., Anderson, S.L., Coking-Resistant Sub-Nano Dehydrogenation Catalysts: Pt n Sn x /SiO2 (n = 4, 7) (2020) ACS Catalysis, 10 (8), pp. 4543-4558
dc.relation.referencesGreeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I., Nørskov, J.K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution (2006) Nature Materials, 5 (11), pp. 909-913
dc.relation.referencesGuo, H., Zhang, B., Qi, Z., Li, C., Ji, J., Dai, T., Zhang, T., Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure (2017) ChemSusChem, 10 (3), pp. 523-532
dc.relation.referencesHa, M.-A., Baxter, E.T., Cass, A.C., Anderson, S.L., Alexandrova, A.N., Boron Switch for Selectivity of Catalytic Dehydrogenation on Size-Selected Pt Clusters on Al2O3 (2017) Journal of the American Chemical Society, 139 (33), pp. 11568-11575
dc.relation.referencesHam, D.J., Han, S., Pak, C., Ji, S.M., Jin, S.-A., Chang, H., Lee, J.S., High Electrochemical Performance and Stability of Co-Deposited Pd-Au on Phase-Pure Tungsten Carbide for Hydrogen Oxidation (2012) Topics in Catalysis, 55 (14-15), pp. 922-930
dc.relation.referencesHammer, B., Hansen, L.B., Nørskov, J.K., Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals (1999) Physical Review B, 59 (11), pp. 7413-7421
dc.relation.referencesHan, N., Yang, K.R., Lu, Z., Li, Y., Xu, W., Gao, T., Sun, X., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid (2018) Nature Communications, 9 (1), p. 924
dc.relation.referencesHarnisch, F., Sievers, G., Schröder, U., Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions (2009) Applied Catalysis B: Environmental, 89 (3-4), pp. 455-458
dc.relation.referencesHatano, Y., Takamori, M., Matsuda, K., Ikeno, S., Fujii, K., Watanabe, K., Solid state reaction between tungsten and amorphous carbon (2002) Journal of Nuclear Materials, 307-311, pp. 1339-1343
dc.relation.referencesHeard, C.J., Hu, C., Skoglundh, M., Creaser, D., Grönbeck, H., Kinetic Regimes in Ethylene Hydrogenation over Transition-Metal Surfaces (2016) ACS Catalysis, 6 (5), pp. 3277-3286
dc.relation.referencesHuang, J., Hong, W., Li, J., Wang, B., Liu, W., High-performance tungsten carbide electrocatalysts for the hydrogen evolution reaction (2020) Sustainable Energy & Fuels, 4 (3), pp. 1078-1083
dc.relation.referencesHumbert, M.P., Menning, C.A., Chen, J.G., Replacing bulk Pt in Pt-Ni-Pt bimetallic structures with tungsten monocarbide (WC): Hydrogen adsorption and cyclohexene hydrogenation on Pt-Ni-WC (2010) Journal of Catalysis, 271 (1), pp. 132-139
dc.relation.referencesHunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y., engineering Nonsintered, Metal-Terminated Tungsten Carbide Nanoparticles for Catalysis (2014) Angewandte Chemie, 126 (20), pp. 5231-5236
dc.relation.referencesHwu, H.H., Chen, J.G., Surface chemistry of transition metal carbides (2005) Chemical Reviews, 105 (1), pp. 185-212
dc.relation.referencesJimenez-Orozco, C., Figueras, M., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Effect of nanostructuring on the interaction of CO 2 with molybdenum carbide nanoparticles (2022) Physical Chemistry Chemical Physics, 24 (27), pp. 16556-16565
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Montoya, A., Rodriguez, J.A., Binding and activation of ethylene on tungsten carbide and platinum surfaces (2019) Physical Chemistry Chemical Physics, 21 (31), pp. 17332-17342
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Viñes, F., Rodriguez, J.A., Illas, F., Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ- MoC(001): An Ab Initio Thermodynamic and Kinetic Study (2020) ACS Catalysis, 10 (11), pp. 6213-6222
dc.relation.referencesJimenez-Orozco, C., Koverga, A.A., Flórez, E., Rodriguez, J.A., Selective hydrogenation of acetylene to ethylene: Performance of a Pt monolayer over an A- WC(0001) surface for binding and hydroconversion of acetylene (2023) Surface Science, 728, p. 122197
dc.relation.referencesJimenez-Orozco, C., Flórez, E., Rodriguez, J.A., The a-WC(0001) Surface as a Hydrogen Sponge: A First Principle Study of H 2 Dissociation and Formation of Low and High Coverages (2023) ChemCatChem
dc.relation.referencesJin, H., Chen, J., Mao, S., Wang, Y., Transition Metal Induced the Contraction of Tungsten Carbide Lattice as Superior Hydrogen Evolution Reaction Catalyst (2018) ACS Applied Materials & Interfaces, 10 (26), pp. 22094-22101
dc.relation.referencesJin, N., Yang, Y., Luo, X., Liu, S., Xiao, Z., Guo, P., Huang, B., First-principles calculation of W/WC interface: Atomic structure, stability and electronic properties (2015) Applied Surface Science, 324, pp. 205-211
dc.relation.referencesJuneau, M., Yaffe, D., Liu, R., Agwara, J.N., Porosoff, M.D., Establishing tungsten carbides as active catalysts for CO 2 hydrogenation (2022) Nanoscale, 14 (44), pp. 16458-16466
dc.relation.referencesKang, J.S., Kim, J., Lee, M.J., Son, Y.J., Jeong, J., Chung, D.Y., Sung, Y.-E., Electrochemical synthesis of nanoporous tungsten carbide and its application as electrocatalysts for photoelectrochemical cells (2017) Nanoscale, 9 (17), pp. 5413-5424
dc.relation.referencesKaraboğa, S., Tungsten(VI) oxide supported rhodium(0) nanoparticles
dc.relation.referenceshighly efficient catalyst for H2 production from dimethylamine borane (2021) International Journal of Hydrogen Energy, 46 (34), pp. 17763-17775
dc.relation.referencesKatsounaros, I., Schneider, W.B., Meier, J.C., Benedikt, U., Biedermann, P.U., Cuesta, A., Mayrhofer, K.J.J., The impact of spectator species on the interaction of H2O2 with platinum - implications for the oxygen reduction reaction pathways (2013) Physical Chemistry Chemical Physics, 15 (21), p. 8058
dc.relation.referencesKelly, T.G., Hunt, S.T., Esposito, D.V., Chen, J.G., Monolayer palladium supported on molybdenum and tungsten carbide substrates as low-cost hydrogen evolution reaction (HER) electrocatalysts (2013) International Journal of Hydrogen Energy, 38 (14), pp. 5638-5644
dc.relation.referencesKelly, T.G., Ren, H., Chen, J.G., Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces (2015) Surface Science, 640, pp. 89-95
dc.relation.referencesKelly, T.G., Stottlemyer, A.L., Ren, H., Chen, J.G., Comparison of O-H, C-H, and C-O Bond Scission Sequence of Methanol on Tungsten Carbide Surfaces Modified by Ni, Rh, and Au (2011) The Journal of Physical Chemistry C, 115 (14), pp. 6644-6650
dc.relation.referencesKojima, I., Miyazaki, E., Inoue, Y., Yasumori, I., Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene (1979) Journal of Catalysis, 59 (3), pp. 472-474
dc.relation.referencesKojima, I., Miyakasi, E., Yasunobu, I., Yasumori, I., Catalytic Activities of TiC, WC, and TaC for Hydrogenation of Ethylene (1979) Journal of Catalysis, 59 (3), pp. 472-474
dc.relation.referencesKoverga, A.A., Flórez, E., Dorkis, L., Rodriguez, J.A., CO, CO2, and H2 Interactions with (0001) and (001) Tungsten Carbide Surfaces: Importance of Carbon and Metal Sites (2019) The Journal of Physical Chemistry C, 123 (14), pp. 8871-8883
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Not all platinum surfaces are the same: Effect of the support on fundamental properties of platinum adlayer and its implications for the activity toward hydrogen evolution reaction (2021) Electrochimica Acta, 368, p. 137598
dc.relation.referencesKoverga, A.A., Flórez, E., Jimenez-Orozco, C., Rodriguez, J.A., Spot the difference: Hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides (2021) Physical Chemistry Chemical Physics, 23 (36), pp. 20255-20267
dc.relation.referencesKoverga, A.A., Flórez, E., Rodriguez, J.A., Pushing Cu uphill of the volcano curve: Impact of a WC support on the catalytic activity of copper toward the hydrogen evolution reaction (2021) International Journal of Hydrogen Energy, 46 (49), pp. 25092-25102
dc.relation.referencesKoverga, A.A., Gómez-Marín, A.M., Dorkis, L., Flórez, E., Ticianelli, E.A., Role of Transition Metals on TM/Mo 2 C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media (2020) ACS Applied Materials & Interfaces, 12 (24), pp. 27150-27165
dc.relation.referencesKresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Physical Review B, 54 (16), pp. 11169-11186
dc.relation.referencesKresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Physical Review B, 59 (3), pp. 1758-1775
dc.relation.referencesKurlov, A.S., Gusev, A.I., Tungsten carbides and W-C phase diagram (2006) Inorganic Materials, 42 (2), pp. 121-127
dc.relation.referencesKurlov, A.S., Gusev, A.I., Phases and Equilibria in the W-C and W-Co-C Systems (2013) Tungsten Carbides. Structure, Properties and Application in Hardmetals, pp. 5-56. , (1st ed.,)
dc.relation.referencesLamb, K.E., Dolan, M.D., Kennedy, D.F., Ammonia for hydrogen storage
dc.relation.referencesA review of catalytic ammonia decomposition and hydrogen separation and purification (2019) International Journal of Hydrogen Energy, 44 (7), pp. 3580-3593
dc.relation.referencesLamb, W.F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J.G.J., Minx, J., A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018 (2021) Environmental Research Letters, 16 (7), p. 073005
dc.relation.referencesLan, R., Irvine, J.T.S., Tao, S., Ammonia and related chemicals as potential indirect hydrogen storage materials (2012) International Journal of Hydrogen Energy, 37 (2), pp. 1482-1494
dc.relation.referencesLevy, R., Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis (1973) Science (New York, N.Y.), 181 (4099), pp. 547-549
dc.relation.referencesLi, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., Xu, L., Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds (2010) Journal of Alloys and Compounds, 502 (1), pp. 28-37
dc.relation.referencesLiang, Y., Chen, L., Ma, C., Kinetics and thermodynamics of H2O dissociation and CO oxidation on the Pt/WC (0001) surface: A density functional theory study (2017) Surface Science, 656, pp. 7-16
dc.relation.referencesLin, L., Chen, M., Wu, L., Synthesis of Molybdenum-Tungsten Bimetallic Carbide Hollow Spheres as pH-Universal Electrocatalysts for Efficient Hydrogen Evolution Reaction (2018) Advanced Materials Interfaces, 5 (23), p. 1801302
dc.relation.referencesLiu, A.Y., Cohen, M.L., Theoretical study of the stability of cubic WC (1988) Solid State Communications, 67 (10), pp. 907-910
dc.relation.referencesLiu, A.Y., Wentzcovitch, R.M., Cohen, M.L., Structural and electronic properties of WC (1988) Physical Review B, 38 (14), pp. 9483-9489
dc.relation.referencesLiu, C., Wen, Y., Lin, L., Zhang, H., Li, X., Zhang, S., Facile in-situ formation of high efficiency nanocarbon supported tungsten carbide nanocatalysts for hydrogen evolution reaction (2018) International Journal of Hydrogen Energy, 43 (33), pp. 15650-15658
dc.relation.referencesLiu, C., Yang, B., Tyo, E., Seifert, S., DeBartolo, J., von Issendorff, B., Curtiss, L.A., Carbon Dioxide Conversion to Methanol over Size-Selected Cu4 Clusters at Low Pressures (2015) Journal of the American Chemical Society, 137 (27), pp. 8676-8679
dc.relation.referencesLiu, Y., Mustain, W.E., Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts (2012) International Journal of Hydrogen Energy, 37 (11), pp. 8929-8938
dc.relation.referencesLöfberg, A., Frennet, A., Leclercq, G., Leclercq, L., Giraudon, J.M., Mechanism of WO3 Reduction and Carburization in CH4/H2 Mixtures Leading to Bulk Tungsten Carbide Powder Catalysts (2000) Journal of Catalysis, 189 (1), pp. 170-183
dc.relation.referencesLópez, M., Broderick, L., Carey, J.J., Viñes, F., Nolan, M., Illas, F., Tuning transition metal carbide activity by surface metal alloying: A case study on CO 2 capture and activation (2018) Physical Chemistry Chemical Physics, 20 (34), pp. 22179-22186
dc.relation.referencesLópez, M., Viñes, F., Nolan, M., Illas, F., Predicting the Effect of Dopants on CO 2 Adsorption in Transition Metal Carbides: Case Study on TiC (001) (2020) The Journal of Physical Chemistry C, 124 (29), pp. 15969-15976
dc.relation.referencesLuković, J., Babić, B., Bučevac, D., Prekajski, M., Pantić, J., Baščarević, Z., Matović, B., Synthesis and characterization of tungsten carbide fine powders (2015) Ceramics International, 41 (1), pp. 1271-1277
dc.relation.referencesMabuea, B.P., Erasmus, E., Swart, H.C., Molybdenum-Tungsten carbides based electrocatalysts for hydrogen evolution reaction (2023) International Journal of Sustainable Energy, 42 (1), pp. 91-102
dc.relation.referencesMagazzino, C., Toma, P., Fusco, G., Valente, D., Petrosillo, I., Renewable energy consumption, environmental degradation and economic growth: The greener the richer? (2022) Ecological Indicators, 139, p. 108912
dc.relation.referencesMaier, S., Stass, I., Cerda, J.I., Salmeron, M., Bonding of Ammonia and Its Dehydrogenated Fragments on Ru(0001) (2012) The Journal of Physical Chemistry C, 116 (48), pp. 25395-25400
dc.relation.referencesMárquez-Alvarez, C., Calridge, J.B., York, A.P.E., Sloan, J., Green, M.L.H., (1997) Benzene hydrogenation over transition metal carbides
dc.relation.referencesMarquez-Alvarez, C., Claridge, J., York, A., Sloan, J., Green, M., Benzene hydrogenation over transition metal carbides (1997) Studies in Surface Science and Catalysis, 106, pp. 485-490. , G. F. Froment, B. Delmon, & P. Grange (Eds.), Elsevier Science
dc.relation.referencesMattheiss, L.F., Hamann, D.R., Bulk and surface electronic structure of hexagonal WC (1984) Physical Review B, 30 (4), pp. 1731-1738
dc.relation.referencesMichalsky, R., Zhang, Y.-J., Peterson, A.A., Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts (2014) ACS Catalysis, 4 (5), pp. 1274-1278
dc.relation.referencesMøller, K.T., Jensen, T.R., Akiba, E., Li, H., Hydrogen - A sustainable energy carrier (2017) Progress in Natural Science: Materials International, 27 (1), pp. 34-40
dc.relation.referencesMorse, J.R., Juneau, M., Baldwin, J.W., Porosoff, M.D., Willauer, H.D., Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction (2020) Journal of CO2 Utilization, 35, pp. 38-46
dc.relation.referencesNørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Stimming, U., Trends in the Exchange Current for Hydrogen Evolution (2005) Journal of The Electrochemical Society, 152 (3), p. J23
dc.relation.referencesPansare, S.S., Torres, W., Goodwin, J.G., Ammonia decomposition on tungsten carbide (2007) Catalysis Communications, 8 (4), pp. 649-654
dc.relation.referencesPark, S., Lee, Y.-L., Yoon, Y., Park, S.Y., Yim, S., Song, W., An, K.-S., Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER (2022) Applied Catalysis B: Environmental, 304, p. 120989
dc.relation.referencesPašti, I.A., Skorodumova, N.V., Mentus, S.V., Theoretical studies in catalysis and electrocatalysis: From fundamental knowledge to catalyst design (2015) Reaction Kinetics, Mechanisms and Catalysis, 115 (1), pp. 5-32
dc.relation.referencesPerdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Physical Review Letters, 77 (18), pp. 3865-3868
dc.relation.referencesPerdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation (1993) Physical Review B, 48 (7), pp. 4978-4978
dc.relation.referencesPinzón, M., Romero, A., de Lucas-Consuegra, A., de la Osa, A.R., Sánchez, P., COx-free hydrogen production from ammonia at low temperature using Co/SiC catalyst: Effect of promoter (2022) Catalysis Today, 390-391, pp. 34-47
dc.relation.referencesPorosoff, M.D., Kattel, S., Li, W., Liu, P., Chen, J.G., Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides (2015) Chemical Communications, 51 (32), pp. 6988-6991
dc.relation.referencesPosada-Pérez, S., Ramírez, P.J., Evans, J., Viñes, F., Liu, P., Illas, F., Rodriguez, J.A., Highly Active Au/8-MoC and Cu/8-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability (2016) Journal of the American Chemical Society, 138 (26), pp. 8269-8278
dc.relation.referencesPosada-Pérez, S., Viñes, F., Ramirez, P.J., Vidal, A.B., Rodriguez, J.A., Illas, F., The bending machine: CO 2 activation and hydrogenation on 8-MoC(001) and B-Mo 2 C(001) surfaces (2014) Phys. Chem. Chem. Phys, 16 (28), pp. 14912-14921
dc.relation.referencesPosada-Pérez, S., Viñes, F., Rodriguez, J.A., Illas, F., Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2 (2015) Topics in Catalysis, 58 (2-3), pp. 159-173
dc.relation.referencesPrats, H., Stamatakis, M., Atomistic and electronic structure of metal clusters supported on transition metal carbides: Implications for catalysis (2022) Journal of Materials Chemistry A, 10 (3), pp. 1522-1534
dc.relation.referencesPrats, H., Stamatakis, M., Stability and reactivity of metal nanoclusters supported on transition metal carbides (2023) Nanoscale Advances, 5 (12), pp. 3214-3224
dc.relation.referencesQuaino, P., Juarez, F., Santos, E., Schmickler, W., Volcano plots in hydrogen electrocatalysis - uses and abuses (2014) Beilstein Journal of Nanotechnology, 5, pp. 846-854
dc.relation.referencesRao, X., Lou, Y., Zhou, Y., Zhang, J., Zhong, S., First-principles insights into ammonia decomposition on WC (0001) surface terminated by W and C (2021) Applied Surface Science, 566, p. 150635
dc.relation.referencesRehman, A., Alam, M.M., Ozturk, I., Alvarado, R., Murshed, M., Işik, C., Ma, H., Globalization and renewable energy use: How are they contributing to upsurge the CO2 emissions? A global perspective (2022) Environmental Science and Pollution Research, 30 (4), pp. 9699-9712
dc.relation.referencesRen, H., Chen, Y., Huang, Y., Deng, W., Vlachos, D.G., Chen, J.G., Tungsten carbides as selective deoxygenation catalysts: Experimental and computational studies of converting C3 oxygenates to propene (2014) Green Chem, 16 (2), pp. 761-769
dc.relation.referencesRodriguez, J.A., Liu, P., Takahashi, Y., Nakamura, K., Viñes, F., Illas, F., Desulfurization of Thiophene on Au/TiC(001): Au-C Interactions and Charge Polarization (2009) Journal of the American Chemical Society, 131 (24), pp. 8595-8602
dc.relation.referencesSabatier, P., La catalyse en chimie organique (1920) Encyclopédie Des Sciences Chimique Appliquées
dc.relation.referencesSagadevan, S., Das, I., Singh, P., Podder, J., Synthesis of tungsten carbide nanoparticles by hydrothermal method and its Characterization (2017) Journal of Materials Science: Materials in Electronics, 28 (1), pp. 1136-1141
dc.relation.referencesSchwarz, K., Blaha, P., Solid state calculations using WIEN2k (2003) Computational Materials Science, 28 (2), pp. 259-273
dc.relation.referencesSegall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C., First-principles simulation: Ideas, illustrations and the CASTEP code (2002) Journal of Physics: Condensed Matter, 14 (11), pp. 2717-2744
dc.relation.references(2020) The production gap report: 2020 Special report, , https://productiongap.org/2020report/
dc.relation.referencesSharma, S., Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts-A review (2012) Journal of Power Sources, 208, pp. 96-119
dc.relation.referencesShen, A., Cao, Y., Adsorption and Decomposition of NH3 on Ni/Pt(111) and Ni/WC(001) Surfaces: A First-Principles Study (2016) Chinese Journal of Chemical Physics, 29 (6), pp. 710-716
dc.relation.referencesSheng, T., Lin, X., Chen, Z.-Y., Hu, P., Sun, S.-G., Chu, Y.-Q., Lin, W.-F., Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: A DFT study (2015) Physical Chemistry Chemical Physics, 17 (38), pp. 25235-25243
dc.relation.referencesSiegel, D.J., Hector, L.G., Adams, J.B., Adhesion, stability, and bonding at metal/metal-carbide interfaces: Al/WC (2002) Surface Science, 498 (3), pp. 321-336
dc.relation.referencesSingla, G., Singh, K., Pandey, O.P., Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural, thermal and electrocatalytic properties (2015) International Journal of Hydrogen Energy, 40 (16), pp. 5628-5637
dc.relation.referencesSohail, U., Pervaiz, E., Ali, M., Khosa, R., Shakoor, A., Abdullah, U., Role of tungsten carbide (WC) and its hybrids in electrochemical water splitting application- A comprehensive review (2022) FlatChem, 35, p. 100404
dc.relation.referencesSoler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order- N materials simulation (2002) Journal of Physics: Condensed Matter, 14 (11), pp. 2745-2779
dc.relation.referencesStefan, P.M., Shek, M.L., Lindau, I., Spicer, W.E., Johansson, L.I., Herman, F., Brogen, G., Photoemission study of WC(0001) (1984) Physical Review B, 29 (10), pp. 5423-5444
dc.relation.referencesStrielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičiené, M., Petrenko, Y., Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review (2021) Energies, 14 (24), p. 8240
dc.relation.referencesSu, W., Yan, P., Wei, X., Zhu, X., Zhou, Q., Facile one-step synthesis of nitrogen- doped carbon sheets supported tungsten carbide nanoparticles electrocatalyst for hydrogen evolution reaction (2020) International Journal of Hydrogen Energy, 45 (58), pp. 33430-33439
dc.relation.referencesSullivan, M.M., Chen, C.-J., Bhan, A., Catalytic deoxygenation on transition metal carbide catalysts (2016) Catalysis Science & Technology, 6 (3), pp. 602-616
dc.relation.referencesTang, C., Wang, D., Wu, Z., Duan, B., Tungsten carbide hollow microspheres as electrocatalyst and platinum support for hydrogen evolution reaction (2015) International Journal of Hydrogen Energy, 40 (8), pp. 3229-3237
dc.relation.referencesTian, X., Zhao, P., Sheng, W., Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances (2019) Advanced Materials, 31 (31), p. 1808066
dc.relation.referencesTong, Y.-J., Wu, S.-Y., Chen, H.-T., Adsorption and reaction of CO and H2O on WC(0001) surface: A first-principles investigation (2018) Applied Surface Science, 428, pp. 579-585
dc.relation.referencesTrasatti, S., Work function, electronegativity, and electrochemical behaviour of metals (1972) Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 39 (1), pp. 163-184
dc.relation.referencesTu, X., Shan, Q., Li, Z., Zhang, F., Wang, Z., Yan, Z., The adsorption properties of Fe, Co, and Ni atoms on A -WC(0001) surface: A first principles study (2019) Materials Research Express, 6 (7), p. 075609
dc.relation.referencesvan Asselt, H., Governing fossil fuel production in the age of climate disruption: Towards an international law of 'leaving it in the ground.' (2021) Earth System Governance, 9, p. 100118
dc.relation.referencesVasić Anićijević, D.D., Nikolić, V.M., Marčeta-Kaninski, M.P., Pašti, I.A., Is platinum necessary for efficient hydrogen evolution? - DFT study of metal monolayers on tungsten carbide (2013) International Journal of Hydrogen Energy, 38 (36), pp. 16071-16079
dc.relation.referencesVasić, D.D., Pašti, I.A., Mentus, S.V., DFT study of platinum and palladium overlayers on tungsten carbide: Structure and electrocatalytic activity toward hydrogen oxidation/evolution reaction (2013) International Journal of Hydrogen Energy, 38 (12), pp. 5009-5018
dc.relation.referencesVértes, G., Horányi, G., Szakács, S., Selective catalytic behaviour of tungsten carbide in the liquid-phase hydrogenation of organic compounds (1973) J. Chem. Soc., Perkin Trans, 2 (10), pp. 1400-1402
dc.relation.referencesVidick, B., Lemaître, J., Leclercq, L., Control of the catalytic activity of tungsten carbides III. Activity for ethylene hydrogenation and cyclohexane dehydrogenation (1986) Journal of Catalysis, 99 (2), pp. 439-448
dc.relation.referencesVijayakumar, P., Senthil Pandian, M., Lim, S.P., Pandikumar, A., Huang, N.M., Mukhopadhyay, S., Ramasamy, P., Facile synthesis of tungsten carbide nanorods and its application as counter electrode in dye sensitized solar cells (2015) Materials Science in Semiconductor Processing, 39, pp. 292-299
dc.relation.referencesViñes, F., Sousa, C., Liu, P., Rodriguez, J.A., Illas, F., A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides (2005) The Journal of Chemical Physics, 122 (17), p. 174709
dc.relation.referencesWang, K.-F., Sun, G.-D., Wu, Y.-D., Zhang, G.-H., Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction-carburization process (2019) Journal of Alloys and Compounds, 784, pp. 362-369
dc.relation.referencesWang, L., Li, Z., Wang, K., Dai, Q., Lei, C., Yang, B., Hou, Y., Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn- H2O cell over a wide pH range (2020) Nano Energy, 74, p. 104850
dc.relation.referencesWang, Y., Song, S., Maragou, V., Shen, P.K., Tsiakaras, P., High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction (2009) Applied Catalysis B: Environmental, 89 (1-2), pp. 223-228
dc.relation.referencesWang, Y., Song, S., Shen, P.K., Guo, C., Li, C.M., Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis (2009) Journal of Materials Chemistry, 19 (34), p. 6149
dc.relation.referencesWannakao, S., Artrith, N., Limtrakul, J., Kolpak, A.M., engineering TransitionMetal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO 2 to Methane (2015) ChemSusChem, 8 (16), pp. 2745-2751
dc.relation.referencesWei, X., Li, N., Tungsten carbide/carbon composites coated with little platinum nano particles derived from the redox reaction between in-situ synthesized WC1-x and chloroplatinic acid as the electrocatalyst for hydrogen evolution reaction (2019) Applied Surface Science, 463, pp. 1154-1160
dc.relation.referencesWu, H., Wang, Q., Qin, M., Yin, R., Zhang, Z., Jia, B., Qu, X., Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution (2020) Ceramics International, 46 (7), pp. 8787-8795
dc.relation.referencesWu, S.-Y., Ho, J.-J., Adsorption, Dissociation, and Hydrogenation of CO 2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations (2012) The Journal of Physical Chemistry C, 116 (24), pp. 13202-13209
dc.relation.referencesWu, Z., Yang, Y., Gu, D., Li, Q., Feng, D., C
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record