Mostrar el registro sencillo del ítem

dc.contributor.authorMaturana J.C
dc.contributor.authorGuindos P
dc.contributor.authorLagos J
dc.contributor.authorArroyave C
dc.contributor.authorEcheverría F
dc.contributor.authorCorrea E.
dc.date.accessioned2024-07-31T21:07:25Z
dc.date.available2024-07-31T21:07:25Z
dc.date.created2023
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11407/8570
dc.descriptionA new two-step densification method for wooden materials entitled hot isostatic pressing (HIP) is proposed. This method has the advantage over previous densification methods that can achieved almost the full densification of wood, reaching values up to 1.47 kg/m3, which exceeds any value ever reported for a hardwood species. Furthermore, it can preserve about 35% of the original volume, in comparison to other methods which typically can preserve only 20% of the volume. Although not tested in this investigation, in principle, the HIP method should be capable of densifying any shape of wood including circular and tubular cross sections because the main densification mechanism is based on gas pressure that is equally exerted in the entire surface, rather than localized mechanical compression, which can only be effective with rectangular cross sections. In the first stage of the two-step proposed method, the compressive strength of the anatomical wood structure is reduced by delignification, and, in the second, a full densification is achieved by hot isostatic pressing under argon atmosphere. Three tropical hardwood species with distinct anatomical characteristics and properties were used to test the method. The HIP-densified wood’s microstructural, chemical, physical, and mechanical properties were assessed. Apart from the high densification values and volume preservation, the results indicate that proposed method was effective for all the tested species, showing homogenous density patterns, stable densification without noticeable shape recovery, and enhanced mechanical properties. Future research should test the HIP method in softwoods and consider the ring orientation in order to enhance the control of the densified geometry. © 2023, Springer Nature Limited.
dc.language.isoeng
dc.publisherNature Research
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85169408326&doi=10.1038%2fs41598-023-41342-8&partnerID=40&md5=94eb01b7dd8a4e6bb929e8e359be890f
dc.sourceScientific Reports
dc.sourceSci. Rep.
dc.sourceScopus
dc.titleTwo-step hot isostatic pressing densification achieved non-porous fully-densified wood with enhanced physical and mechanical propertieseng
dc.typearticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.publisher.programIngeniería de Materialesspa
dc.type.spaArtículo
dc.identifier.doi10.1038/s41598-023-41342-8
dc.relation.citationvolume13
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationMaturana, J.C., Grupo de Investigación Ingeniería de Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeMedellín, Carrera 87 No. 30 – 65, Medellín, 050026, Colombia, Grupo de Investigación Valoración y Aprovechamiento de la Biodiversidad - VALORABIO, Universidad Tecnológica del Chocó UTCH, Carrera 22 No. 18B – 10, Quibdó, Colombia
dc.affiliationGuindos, P., Centro Nacional de Excelencia Para la Industria de la Madera (CENAMAD), School of engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
dc.affiliationLagos, J., Centro Nacional de Excelencia Para la Industria de la Madera (CENAMAD), School of engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
dc.affiliationArroyave, C., Grupo de Investigaciones y Mediciones Ambientales – GEMA, Department of Environmental engineering, Universidad de Medellín UdeMedellín, Carrera 87 No. 30 – 65, Medellín, 050026, Colombia
dc.affiliationEcheverría, F., Centro de Investigación, Innovación y Desarrollo de Ingeniería de Materiales – CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Ingeniería de Materiales con Impacto – MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín UdeMedellín, Carrera 87 No. 30 – 65, Medellín, 050026, Colombia
dc.relation.referencesKamke, F.A., Rathi, V.M., Apparatus for viscoelastic thermal compression of wood (2011) Eur. J. Wood Wood Prod., 69, pp. 483-487
dc.relation.referencesSong, J., Processing bulk natural wood into a high-performance structural material (2018) Nature, 554, pp. 224-228. , COI: 1:CAS:528:DC%2BC1cXisVKis78%3D, PID: 29420466
dc.relation.referencesFrey, M., Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering (2018) ACS Appl. Mater. Interfaces, 10, pp. 5030-5037. , COI: 1:CAS:528:DC%2BC1cXhslCms74%3D, PID: 29373784
dc.relation.referencesXiang, E., Feng, S., Yang, S., Huang, R., Sandwich compression of wood: Effect of superheated steam treatment on sandwich compression fixation and its mechanisms (2020) Wood Sci. Technol., 54, pp. 1529-1549. , COI: 1:CAS:528:DC%2BB3cXitFWju7bN
dc.relation.referencesLaine, K., Segerholm, K., Wålinder, M., Rautkari, L., Hughes, M., Wood densification and thermal modification: Hardness, set-recovery and micromorphology (2016) Wood Sci. Technol., 50, pp. 883-894. , COI: 1:CAS:528:DC%2BC28XotF2lu7k%3D
dc.relation.referencesJakob, M., Czabany, I., Veigel, S., Müller, U., Gindl-Altmutter, W., Comparing the suitability of domestic spruce, beech, and poplar wood for high-strength densified wood (2022) Eur. J. Wood Wood Prod., 80, pp. 859-876. , COI: 1:CAS:528:DC%2BB38XhvFeqtbzN
dc.relation.referencesYu, Y., High-pressure densification and hydrophobic coating for enhancing the mechanical properties and dimensional stability of soft poplar wood boards (2020) J. Wood Sci., 66, p. 45. , COI: 1:CAS:528:DC%2BB3cXhs1yhtbvJ
dc.relation.referencesAlbert, C.M., Liew, K.C., Effect of viscoelastic thermal compression (VTC) treatment on density and moisture content of laminas from Paraserianthes falcataria (2022) Adv. Mater. Process. Technol., 8, pp. 194-202
dc.relation.referencesKutnar, A., Kamke, F.A., Sernek, M., The mechanical properties of densified VTC wood relevant for structural composites (2008) Holz als Roh Werkstoff, 66, pp. 439-446. , COI: 1:CAS:528:DC%2BD1cXhsVert7nI
dc.relation.referencesShi, J., Peng, J., Huang, Q., Cai, L., Shi, S.Q., Fabrication of densified wood via synergy of chemical pretreatment, hot-pressing and post mechanical fixation (2020) J. Wood Sci., 66, p. 5. , COI: 1:CAS:528:DC%2BB3cXltFelsrs%3D
dc.relation.referencesCabral, J.P., Kafle, B., Subhani, M., Reiner, J., Ashraf, M., Densification of timber: A review on the process, material properties, and application (2022) J. Wood Sci., 2022 (68), pp. 1-24
dc.relation.referencesGibson, L.J., The hierarchical structure and mechanics of plant materials (2012) J. R. Soc. Interface, 9, pp. 2749-2766. , COI: 1:CAS:528:DC%2BC38XhslWrsr7K, PID: 22874093
dc.relation.referencesSandberg, D., Haller, P., Navi, P., Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products (2013) Wood Mat. Sci. eng., 8, pp. 64-88. , COI: 1:CAS:528:DC%2BC38XhvVOqsrzO
dc.relation.referencesKutnar, A., Viscoelastic properties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis (2021) Eur. J. Wood Wood Prod., 79, pp. 263-271
dc.relation.referencesLaskowska, A., Marchwicka, M., Trzaska, A., Boruszewski, P., Surface and physical features of thermo-mechanically modified Iroko and Tauari wood for flooring application (2021) Coatings, 11, p. 1528. , COI: 1:CAS:528:DC%2BB38XhtVCgur4%3D
dc.relation.referencesBekhta, P., Mamoňová, M., Sedliačik, J., Novák, I., Anatomical study of short-term thermo-mechanically densified alder wood veneer with low moisture content (2016) Eur. J. Wood Wood Prod., 74, pp. 643-652
dc.relation.referencesKutnar, A., Kamke, F.A., Sernek, M., Density profile and morphology of viscoelastic thermal compressed wood (2009) Wood Sci. Technol., 43, pp. 57-68. , COI: 1:CAS:528:DC%2BD1MXhvVCgsLg%3D
dc.relation.referencesStandfest, G., Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography (2013) Wood Sci. Technol., 47, pp. 121-139. , COI: 1:CAS:528:DC%2BC3sXhtVaruw%3D%3D
dc.relation.referencesLuan, Y., Fang, C.-H., Ma, Y.-F., Fei, B.-H., Wood mechanical densification: A review on processing (2022) Mater. Manuf. Process., 37, pp. 359-371. , COI: 1:CAS:528:DC%2BB38Xjt12rtw%3D%3D
dc.relation.referencesSun, W., Li, J., Yu, Y., Zhu, S., (2016) Application of High Pressure Processing on Fast-growing Chinese Fir, p. 1. , American Society of Agricultural and Biological engineers
dc.relation.referencesLi, H., Zhang, F., Ramaswamy, H.S., Zhu, S., Yu, Y., High-pressure treatment of Chinese fir wood: Effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability (2016) BioResources, 11, pp. 10497-10510. , COI: 1:CAS:528:DC%2BC2sXhtlSmsrs%3D
dc.relation.referencesYu, Y., Zhang, F., Zhu, S., Li, H., Effects of high-pressure treatment on poplar wood: Density profile, mechanical properties, strength potential index, and microstructure (2017) BioResources, 12, pp. 6283-6297. , COI: 1:CAS:528:DC%2BC2sXhs1ahu7vE
dc.relation.referencesBlomberg, J., Persson, B., Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process (2004) J. Wood Sci., 50, pp. 307-314
dc.relation.referencesBlomberg, J., Elastic strain at semi-isostatic compression of Scots pine (Pinus sylvestris) (2005) J. Wood Sci., 51, pp. 401-404. , COI: 1:CAS:528:DC%2BD2MXhtVehtbfJ
dc.relation.referencesBlomberg, J., Persson, B., Bexell, U., Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking (2006) Holzforschung, 60, pp. 322-331. , COI: 1:CAS:528:DC%2BD28XlsFahtbY%3D
dc.relation.referencesBoonstra, M.J., Blomberg, J., Semi-isostatic densification of heat-treated radiata pine (2007) Wood Sci. Technol., 41, pp. 607-617. , COI: 1:CAS:528:DC%2BD2sXhtVWktbjE
dc.relation.referencesKumar, A., Jyske, T., Petrič, M., Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: A review (2021) Adv. Sustain. Syst., 5, p. 2000251. , COI: 1:CAS:528:DC%2BB3MXhvFKmsbjL
dc.relation.referencesLi, J., Chen, C., Zhu, J.Y., Ragauskas, A.J., Hu, L., In situ wood delignification toward sustainable applications (2021) Acc. Mater. Res., 2, pp. 606-620. , COI: 1:CAS:528:DC%2BB3MXhs1KmurrM
dc.relation.referencesJamaldheen, S.B., A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion (2022) Bioresour. Technol., 346, p. 126591
dc.relation.referencesFrey, M., Schneider, L., Masania, K., Keplinger, T., Burgert, I., Delignified wood-polymer interpenetrating composites exceeding the rule of mixtures (2019) ACS Appl. Mater. Interfaces, 11, pp. 35305-35311. , COI: 1:CAS:528:DC%2BC1MXhs1KksLzL, PID: 31454224
dc.relation.referencesGullo, F., Marangon, A., Croce, A., Gatti, G., Aceto, M., From natural woods to high density materials: An ecofriendly approach (2023) Sustainability, 15, p. 2055. , COI: 1:CAS:528:DC%2BB3sXjsF2hurs%3D
dc.relation.referencesSikora, A., Gaff, M., Kumar Sethy, A., Fantuzzi, N., Horáček, P., Bending work of laminated materials based on densified wood and reinforcing components (2021) Compos. Struct., 274, p. 114319
dc.relation.referencesWeddeling, A., Theisen, W., Energy and time saving processing: A combination of hot isostatic pressing and heat treatment (2017) Met. Powder Rep., 72, pp. 345-348
dc.relation.referencesEklund, A., Ahlfors, M., Heat treatment of PM parts by hot isostatic pressing (2018) Met. Powder Rep., 73, pp. 163-169
dc.relation.referencesAtkinson, H., Davies, S., Fundamental aspects of hot isostatic pressing: An overview (2000) Metall. Mater. Trans. A, 31A, pp. 2981-3000. , COI: 1:CAS:528:DC%2BD3MXit1antA%3D%3D
dc.relation.referencesDünisch, O., Baas, P., On the origin of intercellular canals in the secondary xylem of selected Meliaceae species (2006) IAWA J., 27, pp. 281-297
dc.relation.referencesWheeler, E.A., InsideWood - A web resource for hardwood anatomy (2011) IAWA J., 32, pp. 199-211
dc.relation.referencesPeussa, H., Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology (2022) PLoS ONE, 17, pp. 1-19
dc.relation.referencesDömény, J., Čermák, P., Koiš, V., Tippner, J., Rousek, R., Density profile and microstructural analysis of densified beech wood (Fagus sylvatica L.) plasticized by microwave treatment (2018) Eur. J. Wood Wood Prod., 76, pp. 105-111
dc.relation.referencesXiang, E., Li, J., Huang, R., Gao, Z., Yang, S., Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood (2022) Wood Sci. Technol., 56, pp. 899-919. , COI: 1:CAS:528:DC%2BB38XhtFyrsb3J
dc.relation.referencesZhuang, J., Li, M., Pu, Y., Ragauskas, A.J., Yoo, C.G., Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy (2020) Appl. Sci., 10, p. 4345. , COI: 1:CAS:528:DC%2BB3cXhs1enur3N
dc.relation.referencesChen, C., Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity (2020) ACS Nano, 14, pp. 16723-16734. , COI: 1:CAS:528:DC%2BB3cXhsVKntb3F, PID: 32806053
dc.relation.referencesMd Salim, R., Asik, J., Sarjadi, M.S., Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark (2021) Wood Sci. Technol., 55, pp. 295-313. , COI: 1:CAS:528:DC%2BB3MXitFWkt74%3D
dc.relation.referencesBrännvall, E., The limits of delignification in kraft cooking (2017) BioResources, 12, pp. 2081-2107
dc.relation.referencesDa Costa, R.M.F., Biorefining potential of wild-grown arundo donax, cortaderia selloana and phragmites australis and the feasibility of white-rot fungi-mediated pretreatments (2021) Front. Plant Sci., 12, p. 1351
dc.relation.referencesYahyaee, S.M.H., Dastoorian, F., Ghorbani, M., Zabihzadeh, S.M., Combined effect of organosolv delignification/polymerization on the set recovery of densified poplar wood (2022) Eur. J. Wood Wood Prod., 80, pp. 367-375. , COI: 1:CAS:528:DC%2BB3MXisVGltbfN
dc.relation.referencesBlomberg, J., Persson, B., Blomberg, A., Effects of semi-isostatic densification of wood on the variation in strength properties with density (2005) Wood Sci. Technol., 39, pp. 339-350. , COI: 1:CAS:528:DC%2BD2MXhtFCrtL%2FI
dc.relation.referencesLesar, B., Humar, M., Kamke, F.A., Kutnar, A., Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi (2013) Wood Sci. Technol., 47, pp. 977-992. , COI: 1:CAS:528:DC%2BC3sXht1KlurbL
dc.relation.referencesMeng, Y., Majoinen, J., Zhao, B., Rojas, O.J., Form-stable phase change materials from mesoporous balsa after selective removal of lignin (2020) Compos. Part B eng., 199, p. 108296. , COI: 1:CAS:528:DC%2BB3MXitFSitL8%3D
dc.relation.referencesShi, J., Lu, Y., Zhang, Y., Cai, L., Shi, S.Q., Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood (2018) Sci. Rep., 2018 (8), pp. 1-9
dc.relation.referencesWang, J., Liu, J., Li, J., Zhu, J.Y., Characterization of microstructure, chemical, and physical properties of delignified and densified poplar wood (2021) Materials (Basel), 14, p. 5709. , COI: 1:CAS:528:DC%2BB3MXit1Cisr7N, PID: 34640115
dc.relation.referencesKuai, B., Development of densified wood with high strength and excellent dimensional stability by impregnating delignified poplar by sodium silicate (2022) Constr. Build. Mater., 344, p. 128282. , COI: 1:CAS:528:DC%2BB38Xit1ais77L
dc.relation.referencesMangurai, S.U.N.M., Effect of densification on the physical and mechanical properties of the inner part of oil palm trunk impregnated with methylene diphenyl diisocyanate (2022) Sci. Rep., 12, p. 15350. , COI: 1:CAS:528:DC%2BB38XitlKrsLnP, PID: 36097034
dc.relation.referencesPelit, H., Budakçi, M., Sönmez, A., Effects of heat post-treatment on dimensional stability and water absorption behaviours of mechanically densified Uludağ fir and black poplar woods (2016) BioResources, 11, pp. 3215-3229. , COI: 1:CAS:528:DC%2BC2sXhtVSgsbrP
dc.relation.referencesShao, Y., Li, L., Chen, Z., Wang, S., Wang, X., Effects of thermo-hydro-mechanical treatments on various physical and mechanical properties of poplar (Populus) wood (2020) BioResources, 15, pp. 9596-9610. , COI: 1:CAS:528:DC%2BB3cXisVeiurnF
dc.relation.referencesXu, B.-H., Yu, K.-B., Wu, H.-C., Bouchaïr, A., Mechanical properties and engineering application potential of the densified poplar (2022) Wood Mater. Sci. eng., 17, pp. 659-667. , COI: 1:CAS:528:DC%2BB3MXhtVylu7jO
dc.relation.referencesSchneider, C.A., Rasband, W.S., Eliceiri, K.W., NIH image to ImageJ: 25 years of image analysis (2012) Nat. Methods, 2012 (9), pp. 671-675
dc.relation.references(2021) Standard Test Methods for Small Clear Specimens of Timber, pp. 1-32
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem