Show simple item record

dc.contributor.advisorCorrea Bedoya, Esteban Alberto
dc.contributor.advisorArroyave Quiceno, Catalina
dc.contributor.authorMaturana Guevara, Juan Carlos
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date2024-07-17
dc.date.accessioned2024-09-24T21:12:33Z
dc.date.available2024-09-24T21:12:33Z
dc.identifier.otherT 0549 2024
dc.identifier.urihttp://hdl.handle.net/11407/8603
dc.descriptionEl desarrollo de materiales de alta resistencia a base de madera es uno de los principales retos que afronta la industria de la madera ante la creciente demanda de materiales sostenibles para aplicaciones de ingeniería avanzada. La madera, es un material derivado de los bosques y en muchos casos su extracción es una actividad selectiva y desmedida que ejerce gran presión sobre las especies forestales más deseables, ya que sus propiedades brindan mejores condiciones para su uso. Esto representaría un alto potencial para contribuir desde un enfoque medioambiental al desarrollo tecnológico de la industria de la madera como estrategia para reducir la dependencia del uso de recursos forestales amenazados y promover el uso de otros recursos forestales que actualmente son poco aprovechados como las maderas menos conocidas, de baja densidad y durabilidad. En la práctica actual, varias estrategias para aumentar la resistencia de la madera de baja densidad han sido objeto de considerable investigación, a través de métodos como la densificación, aunque todavía se enfrentan a ciertas limitaciones en términos de desarrollo. Estos métodos de densificación mejoran las propiedades mecánicas de la madera reduciendo primero la resistencia de la pared celular por métodos físicos o químicos y aplicando después compresión mecánica. Los avances más significativos se han conseguido combinando tratamientos como la deslignificación y densificación. Esta tesis se ha centrado en el desarrollo de un material estructural de alto desempeño a partir de madera reforestada de baja densidad como estrategia que contribuye a potenciar maderas con bajas propiedades y reduce la presión que se ejerce sobre las maderas más conocidas. Potenciar las maderas de bajas propiedades permitiría trabajar en la investigación de nuevos materiales con posibilidades potenciales de aplicación en diferentes sectores tecnológicos. El método propuesto consiste en la densificación en dos etapas para materiales de madera denominado prensado isostático en caliente (HIP), el cual abarca dos importantes áreas de investigación. La etapa inicial del estudio prepara el material mediante la eliminación parcial de lignina y hemicelulosa, lo que permite reducir la resistencia a la compresión de la estructura anatómica de la madera. En la segunda etapa, se consigue una alta densificación mediante prensado isostático en caliente en una atmósfera de argón. Los resultados obtenidos indican que el tratamiento de deslignificación es un proceso con efectos no uniformes sobre la eliminación de lignina/hemicelulosa y los minerales acumulados debido a la estructura anatómica de la madera. Los resultados demuestran que el método puede lograr la densificación casi completa de la madera, alcanzando valores de hasta 1.47 g/cm3, lo que supera los incrementos de densidad alcanzados con los métodos de densificación anteriores y cualquier incremento de la densidad jamás registrado para una especie de madera dura. En comparación, este método también puede preservar alrededor del 35% del volumen original de la madera, en comparación con otros métodos que normalmente sólo pueden mantener el 20% del volumen. Además, muestra patrones de densidad homogéneos, densificación estable sin recuperación de la forma y propiedades mecánicas mejoradas. Esta investigación también revisa el efecto de la densificación en los procesos de descomposición natural de la madera de Sande densificada mediante HIP en comparación con especímenes no densificados de Sande, Andiroba y Choiba, demostrando su eficacia para obtener una mayor durabilidad natural de la madera densificada en clima poco adverso (templado – seco). En definitiva, el método de densificación de dos pasos propuesto en esta tesis contribuye a potenciar maderas de baja densidad mediante el desarrollo de un material estructural de alto desempeño a partir de la deslignificación parcial y densificación isostática de la madera. Lo que sugiere un potencial prometedor para los nuevos materiales de madera procesados con HIP.spa
dc.descriptionThe development of high-strength wood-based materials is one of the main challenges facing the wood industry in the face of the growing demand for sustainable materials for advanced engineering applications. Wood is a material derived from forests and in many cases its extraction is a selective and excessive activity that exerts great pressure on the most desirable forest species, since their properties provide better conditions for its use. This would represent a high potential to contribute from an environmental approach to the technological development of the wood industry as a strategy to reduce dependence on the use of threatened forest resources and promote the use of other forest resources that are currently underutilized, such as lesser-known woods of low density and durability. In current practice, various strategies to increase the strength of low-density wood have been the subject of considerable research, through methods such as densification, although they still face certain limitations in terms of development. These densification methods improve the mechanical properties of wood by first reducing the cell wall strength by physical or chemical methods and then applying mechanical compression. The most significant advances have been achieved by combining treatments such as delignification and densification. This thesis has focused on the development of a high-performance structural material from low density reforested wood as a strategy to improve woods with low properties and to reduce the compression of the best-known woods. The improvement of woods with low properties would allow the research of new materials with potential applications in different technological sectors. The proposed method consists of a two-stage densification of wood materials, called Hot Isostatic Pressing (HIP), which includes two important areas of research. In the first stage of the study, the material is prepared by partial removal of lignin and hemicellulose, thereby reducing the compressive strength of the anatomical wood structure. In the second stage, high densification is achieved by hot isostatic pressing in an argon atmosphere. The results obtained indicate that the delignification treatment is a process with non-uniform effects on the removal of lignin/hemicellulose and accumulated minerals due to the anatomical structure of the wood. The results show that the method can achieve almost complete densification of the wood, reaching values up to 1.47 g/cm3, which exceeds the density increases achieved with previous densification methods and any density increase ever recorded for a hardwood species. In comparison, this method can also preserve approximately 35% of the original volume of the wood, compared to other methods that can typically only maintain 20% of the volume. It also shows homogeneous density patterns, stable densification without shape recovery and improved mechanical properties. This research also examines the effect of densification on the natural decay processes of HIP-densified Sande wood in comparison with non-densified Sande, Andiroba and Choiba specimens, demonstrating its effectiveness in achieving higher natural durability of densified wood in low adverse climates (temperate - dry). Ultimately, the two-stage densification process proposed in this thesis contributes to the improvement of low-density woods by developing a high-performance structural material from the partial delignification and isostatic densification of wood. This suggests a promising potential for new HIP processed wood materials.eng
dc.format.extentp. 1-119
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellínspa
dc.publisherUniversidad de Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectPartial delignificationeng
dc.subjectWood chemistryeng
dc.subjectTropical hardwoodseng
dc.subjectWood modificationeng
dc.subjectAnatomical structureeng
dc.subjectDurabilityeng
dc.subjectHIP densificationeng
dc.subjectWood decayeng
dc.subjectTropical hardwoodseng
dc.titleDevelopment of a high-performance structural material from reforested wood of the Brosimum utile (Kunth) Oken species from the department of Chocóspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programDoctorado en Ingeniería
dc.subject.lembÁrboles maderables
dc.subject.lembCompresión de la madera
dc.subject.lembMadera
dc.subject.lembResistencia de materiales
dc.relation.citationstartpage1
dc.relation.citationendpage119
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.placeMedellín
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.referencesAlbert CM, Liew KC (2022) Effect of viscoelastic thermal compression (VTC) treatment on density and moisture content of laminas from Paraserianthes falcataria. Adv Mater Process Technol 8:194–202
dc.relation.referencesAli AC, Uetimane E, Råberg U, Terziev N (2011) Comparative natural durability of five wood species from Mozambique. Int Biodeterior Biodegradation 65:768–776
dc.relation.referencesAli MR, Abdullah UH, Ashaari Z, et al (2021) Hydrothermal Modification of Wood: A Review. Polymers (Basel) 13:
dc.relation.referencesAshby MF, Jones DRH (2013) Engineering Materials 2: An Introduction to Microstructures and Processing, Fourth Edi. Elsevier Ltd
dc.relation.referencesASTM D143-21 (2021) Standard Test Methods for Small Clear Specimens of Timber,. 1–32
dc.relation.referencesAtkinson H, Davies S (2000) Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A 31A:2981–3000
dc.relation.referencesBaar J, Hrdlička P, Rademacher P, et al (2023) Decay resistance of ammonia-plasticised and densified beech wood. Wood Mater Sci \& Eng 18:172–183
dc.relation.referencesBahman Ghiassi and Paulo B. Lourenço (2019) Long-term Performance and Durability of Masonry Structures
dc.relation.referencesBanik MT, Lindner DL, Jusino MA (2024) Intraspecific interactions among wood-decay fungi alter decay rates and dynamics of interspecific interactions. Fungal Ecol 68:101314
dc.relation.referencesBao M, Huang X, Jiang M, et al (2017) Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). J Wood Sci 63:591–605
dc.relation.referencesBekhta P, Mamoňová M, Sedliačik J, Novák I (2016) Anatomical study of short-term thermo-mechanically densified alder wood veneer with low moisture content. Eur J Wood Wood Prod 74:643–652
dc.relation.referencesBlomberg J (2005) Elastic strain at semi-isostatic compression of Scots pine (Pinus sylvestris). J Wood Sci 51:401–404
dc.relation.referencesBlomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50:307–314
dc.relation.referencesBlomberg J, Persson B, Bexell U (2006) Effects of semi-isostatic densification on anatomy and cell-shape recovery on soaking. Holzforschung 60:322–331
dc.relation.referencesBlomberg J, Persson B, Blomberg A (2005) Effects of semi-isostatic densification of wood on the variation in strength properties with density. Wood Sci Technol 39:339–350
dc.relation.referencesBoerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546
dc.relation.referencesBoonstra MJ, Blomberg J (2007) Semi-isostatic densification of heat-treated radiata pine. Wood Sci Technol 41:607–617
dc.relation.referencesBrännvall E (2017) The limits of delignification in kraft cooking. BioResources 12:2081–2107
dc.relation.referencesBrischke C, Alfredsen G (2020) Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol 104:3781–3795
dc.relation.referencesBrischke C, Alfredsen G (2023) Biological durability of pine wood. Wood Mater Sci \& Eng 18:1050–1064
dc.relation.referencesBrischke C, Bayerbach R, Otto Rapp A (2006) Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Mater Sci Eng 1:91–107
dc.relation.referencesCabral JP, Kafle B, Subhani M, et al (2022) Densification of timber: a review on the process, material properties, and application. J Wood Sci 2022 681 68:1–24
dc.relation.referencesCallum Hill (2006) Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd.
dc.relation.referencesCan A, Tomak ED, Ermeydan MA, Aykanat O (2023) Synergic effect of basalt/wood fiber reinforced polylactic acid hybrid biocomposites against fungal decay. Eur Polym J 195:112246
dc.relation.referencesCandelier K, Thevenon M-F, Petrissans A, et al (2016) Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci 73:571–583
dc.relation.referencesChang S, Yao L, Wang Z, Wang X (2024) Novel two-step strategy for the construction of weathering-resistant hydrophobic wood to extend its service life. Prog Org Coatings 186:107985
dc.relation.referencesChen C, Kuang Y, Zhu S, et al (2020a) Structure–property–function relationships of natural and engineered wood. Nat Rev Mater
dc.relation.referencesChen C, Song J, Cheng J, et al (2020b) Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano 14:16723–16734
dc.relation.referencesDa Costa RMF, Winters A, Hauck B, et al (2021) Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. Front Plant Sci 12:1351
dc.relation.referencesDadzie PK, Amoah M (2015) Density, some anatomical properties and natural durability of stem and branch wood of two tropical hardwood species for ground applications. Eur J Wood Wood Prod 73:759–773
dc.relation.referencesDe Avila Delucis R, Machado SF, Missio AL, Gatto DA (2019) Decay resistance of two-step freezing–heat-treated fast-growing eucalyptus wood. J Indian Acad Wood Sci 16:139–143
dc.relation.referencesDeklerck V, De Ligne L, Espinoza E, et al (2020) Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Sci Technol 54:981–1000
dc.relation.referencesDewhirst RA, Mortimer JC, Jardine KJ (2020) Do Cell Wall Esters Facilitate Forest Response to Climate? Trends Plant Sci 25:729–732
dc.relation.referencesDömény J, Čermák P, Koiš V, et al (2018) Density profile and microstructural analysis of densified beech wood (Fagus sylvatica L.) plasticized by microwave treatment. Eur J Wood Wood Prod 76:105–111
dc.relation.referencesDünisch O, Baas P (2006) On the origin of intercellular canals in the secondary xylem of selected Meliaceae species. IAWA J 27:281–297
dc.relation.referencesEklund A, Ahlfors M (2018) Heat treatment of PM parts by Hot Isostatic Pressing. Met Powder Rep 73:163–169
dc.relation.referencesEmbacher J, Zeilinger S, Kirchmair M, et al (2023) Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. Fungal Biol Rev 45:100305
dc.relation.referencesEN 113–2 (2021) Durability of wood and wood-based products - Test method against wood destroying basidiomycetes—part 2: assessment of biocidal efficacy of wood preservatives, European Committee for Standardization
dc.relation.referencesEN 350 (2017) Durability of wood and wood-based products—testing and classification of the durability to biological agents of wood and wood-based materials
dc.relation.referencesFreitag C, Kamke FA, Morrell JJ (2015) Resistance of resin-impregnated VTC processed hybrid-poplar to fungal attack. Int Biodeterior Biodegradation 99:174–176
dc.relation.referencesFrey M, Schneider L, Masania K, et al (2019) Delignified Wood–Polymer Interpenetrating Composites Exceeding the Rule of Mixtures. ACS Appl Mater Interfaces 11:35305–35311
dc.relation.referencesFrey M, Widner D, Segmehl JS, et al (2018) Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl Mater Interfaces 10:5030–5037
dc.relation.referencesFu Q, Ansari F, Zhou Q, Berglund LA (2018) Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures. ACS Nano 12:2222–2230
dc.relation.referencesGao J, Kim JS, Terziev N, et al (2018) Effect of thermal modification on the durability and decay patterns of hardwoods and softwoods exposed to soft rot fungi. Int Biodeterior Biodegradation 127:35–45
dc.relation.referencesGao J, Kim JS, Terziev N, Daniel G (2016) Decay resistance of softwoods and hardwoods thermally modified by the Thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung 70:877–884
dc.relation.referencesGao X, Zhao J, Fei L, et al (2024) Effects of sodium chloride on mechanical properties in amorphous polymers of waterlogged archaeological wood: Insights from molecular dynamics simulations. J Cult Herit 66:444–454
dc.relation.referencesGibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766
dc.relation.referencesGondaliya A, Alipoormazandarani N, Kleiman M, Foster EJ (2023) Sustainable compressed biocomposite: Review on development and novel approaches. Mater Today Commun 35:105846
dc.relation.referencesGuan H, Cheng Z, Wang X (2018) Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 12:10365–10373
dc.relation.referencesGullo F, Marangon A, Croce A, et al (2023) From Natural Woods to High Density Materials: An Ecofriendly Approach. Sustainability 15:
dc.relation.referencesHorikawa Y, Hirano S, Mihashi A, et al (2019) Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl Biochem Biotechnol 2019 1884 188:1066–1076
dc.relation.referencesIAWA (1989) Preliminary material: IAWA list of microscopic features for hardwood identification. IAWA J 10:219–232
dc.relation.referencesIcontec-NTC-784 (1974) Maderas. Determinación de la resistencia a la compresión axial o paralela al grano. Colombia
dc.relation.referencesIcontec - NTC 918 (1975) Maderas. Determinación de la dureza (Método Janka)
dc.relation.referencesIDEAM (2023) IDEAM. http://www.ideam.gov.co/inicio
dc.relation.referencesJ.M.Dinwoodie (2004) Timber: Its nature and behaviour, Second. Taylor & Francis e-Library, London and New York
dc.relation.referencesJakob M, Czabany I, Veigel S, et al (2022a) Comparing the suitability of domestic spruce, beech, and poplar wood for high-strength densified wood. Eur J Wood Wood Prod 80:859–876
dc.relation.referencesJakob M, Mahendran AR, Gindl-Altmutter W, et al (2022b) The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Prog Mater Sci 125:100916
dc.relation.referencesJakob M, Stemmer G, Czabany I, et al (2020) Preparation of high strength plywood from partially delignified densified wood. Polymers (Basel) 12:1796
dc.relation.referencesJamaldheen SB, Kurade MB, Basak B, et al (2022) A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 346:126591
dc.relation.referencesJurgensen M, Reed D, Page-Dumroese D, et al (2006) Wood strength loss as a measure of decomposition in northern forest mineral soil. Eur J Soil Biol 42:23–31
dc.relation.referencesKamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Wood Prod 69:483–487
dc.relation.referencesKenneth E. Udele; Jeffrey J. Morrell; Arijit Sinha (2021) Biological Durability of Cross-Laminated Timber— The State of Things. For Prod J 71:124--132
dc.relation.referencesKim JS, Gao J, Daniel G (2015) Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus I. preferential lignin degradation prior to hemicelluloses in Norway spruce wood. Int Biodeterior Biodegradation 105:30–40
dc.relation.referencesKim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48
dc.relation.referencesKim M-J, Choi Y-S, Oh J-J, Kim G-H (2020a) Experimental investigation of the humidity effect on wood discoloration by selected mold and stain fungi for a proper conservation of wooden cultural heritages. J Wood Sci 66:31
dc.relation.referencesKim S, Kim K, Jun G, Hwang W (2020b) Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14:17233–17240
dc.relation.referencesKuai B, Wang Z, Gao J, et al (2022) Development of densified wood with high strength and excellent dimensional stability by impregnating delignified poplar by sodium silicate. Constr Build Mater 344:128282
dc.relation.referencesKumar A, Jyske T, Petrič M (2021) Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review. Adv Sustain Syst 5:2000251
dc.relation.referencesKumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 2017 41 4:1–19
dc.relation.referencesKutnar A, Humar M, Kamke FA, Sernek M (2011) Fungal decay of viscoelastic thermal compressed (VTC) wood. Eur J Wood Wood Prod 69:325–328
dc.relation.referencesKutnar A, Kamke FA, Sernek M (2008) The mechanical properties of densified VTC wood relevant for structural composites. Holz als Roh - und Werkst. 66:439–446
dc.relation.referencesKutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68
dc.relation.referencesKutnar A, O’Dell J, Hunt C, et al (2021) Viscoelastic properties of thermo-hydro-mechanically treated beech (Fagus sylvatica L.) determined using dynamic mechanical analysis. Eur J Wood Wood Prod 79:263–271
dc.relation.referencesLaine K, Segerholm K, Wålinder M, et al (2016) Wood densification and thermal modification: hardness, set-recovery and micromorphology. Wood Sci Technol 50:883–894
dc.relation.referencesLajnef L, Caceres I, Trinsoutrot P, et al (2018) Effect of Punica granatum peel and Melia azedarach bark extracts on durability of European beech and maritime pine. Eur J Wood Wood Prod 76:1725–1735
dc.relation.referencesLaskowska A, Marchwicka M, Trzaska A, Boruszewski P (2021) Surface and Physical Features of Thermo-Mechanically Modified Iroko and Tauari Wood for Flooring Application. Coatings 11:
dc.relation.referencesLesar B, Humar M, Kamke FA, Kutnar A (2013) Influence of the thermo-hydro-mechanical treatments of wood on the performance against wood-degrading fungi. Wood Sci Technol 47:977–992
dc.relation.referencesLi H, Zhang F, Ramaswamy HS, et al (2016) High-Pressure Treatment of Chinese Fir Wood: Effect on Density, Mechanical Properties, Humidity-Related Moisture Migration, and Dimensional Stability. BioResources 11:10497–10510
dc.relation.referencesLi J, Chen C, Zhu JY, et al (2021) In situ wood delignification toward sustainable applications. Acc Mater Res 2:606–620
dc.relation.referencesLi T, Cui L, Song X, et al (2022) Wood decay fungi: an analysis of worldwide research. J Soils Sediments 22:1688–1702
dc.relation.referencesLigne L De, den Bulcke J Van, Baetens JM, et al (2021) Unraveling the natural durability of wood: revealing the impact of decay-influencing characteristics other than fungicidal components. Holzforschung 75:368–378
dc.relation.referencesLipeh S, Schimleck L, Mankowski ME, et al (2021) ATR-FTIR Study of Alaska Yellow Cedar Extractives and Relationship with Their Natural Durability. Forests 12:
dc.relation.referencesLuan Y, Fang C-H, Ma Y-F, Fei B-H (2022) Wood mechanical densification: a review on processing. Mater Manuf Process 37:359–371
dc.relation.referencesM Sain NY (2013) A New Method for Demethylation of Lignin from Woody Biomass using Biophysical Methods. J Chem Eng Process Technol 04:
dc.relation.referencesMa L, Zhu Y, Huang Y, et al (2022) Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds. Carbohydr Polym 281:119083
dc.relation.referencesMamoňová M, Reinprecht L (2020) The impact of natural and artificial weathering on the anatomy of selected tropical hardwoods. IAWA J 41:333–355
dc.relation.referencesMangurai SUNM, Hermawan D, Hadi YS, et al (2022) Effect of densification on the physical and mechanical properties of the inner part of oil palm trunk impregnated with methylene diphenyl diisocyanate. Sci Rep 12:15350
dc.relation.referencesManici LM, De Meo I, Ludovica Saccà M, et al (2023) The relationship between tree species and wood colonising fungi and fungal interactions influences wood degradation. Ecol Indic 151:110312
dc.relation.referencesMartín JA, López R (2023) Biological Deterioration and Natural Durability of Wood in Europe. Forests 14:
dc.relation.referencesMattos BD, de Cademartori PHG, Lourençon T V, et al (2014) Biodeterioration of wood from two fast-growing eucalypts exposed to field test. Int Biodeterior Biodegradation 93:210–215
dc.relation.referencesMaturana JC, Guindos P, Lagos J, et al (2023) Two-step hot isostatic pressing densification achieved non-porous fully-densified wood with enhanced physical and mechanical properties. Sci Rep 13:14324
dc.relation.referencesMd Salim R, Asik J, Sarjadi MS (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol 55:295–313
dc.relation.referencesMeng Y, Majoinen J, Zhao B, Rojas OJ (2020) Form-stable phase change materials from mesoporous balsa after selective removal of lignin. Compos Part B Eng 199:108296
dc.relation.referencesMi X, Li T, Wang J, Hu Y (2020) Evaluation of Salt-Induced Damage to Aged Wood of Historical Wooden Buildings. Int J Anal Chem 2020:
dc.relation.referencesNavi P, Girardet F (2000) Effects of Thermo-Hydro-Mechanical Treatment on the Structure and Properties of Wood. Holzforschung 54:287–293
dc.relation.referencesNavi P, Sandberg D (2012) Thermo-Hydro-Mechanical Processing of Wood, First. Taylor & Francis Group, LLC
dc.relation.referencesNiamké FB, Amusant N, Charpentier J-P, et al (2011) Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Ann For Sci 68:201–211
dc.relation.referencesPelit H, Budakçi M, Sönmez A (2016) Effects of heat post-treatment on dimensional stability and water absorption behaviours of mechanically densified Uludağ fir and black poplar woods. BioResources 11:3215–3229
dc.relation.referencesPelit H, Yalçın M (2017) Resistance of mechanically densified and thermally post-treated pine sapwood to wood decay fungi. J Wood Sci 63:514–522
dc.relation.referencesPeussa H, Kreutzer J, Mäntylä E, et al (2022) Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology. PLoS One 17:1–19
dc.relation.referencesPlaschkies K, Jacobs K, Scheiding W, Melcher E (2014) Investigations on natural durability of important European wood species against wood decay fungi. Part 1: Laboratory tests. Int Biodeterior Biodegradation 90:52–56
dc.relation.referencesPolanco Tapia CA, Caicedo Velásquez JP, Beltrán Hernández DH (2014) Durabilidad natural y descripción anatómica de la madera de la especie Caryodaphnopsis cogolloi Van der Werf. Colomb For 17:25–39
dc.relation.referencesRabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91
dc.relation.referencesRautkari L, Laine K, Kutnar A, et al (2013) Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. J Mater Sci 48:2370–2375
dc.relation.referencesRepič R, Pondelak A, Kržišnik D, et al (2022) Combining mineralisation and thermal modification to improve the fungal durability of selected wood species. J Clean Prod 351:131530
dc.relation.referencesRingman R, Beck G, Pilgård A (2019) The Importance of Moisture for Brown Rot Degradation of Modified Wood: A Critical Discussion. Forests 10:
dc.relation.referencesRowell RM (2005) Handbook of wood chemistry and wood composites. Taylor & Francis
dc.relation.referencesRuffinatto F, Crivellaro A (2019) Atlas of Macroscopic Wood Identification
dc.relation.referencesSadatnezhad SH, Khazaeian A, Sandberg D, Tabarsa T (2017) Continuous Surface Densification of Wood: A New Concept for Large-scale Industrial Processing. BioResources 12:3122–3132
dc.relation.referencesSaito H (2017) Application of the Wood Degradation Model to an Actual Roof Assembly subjected to Rain Penetration. Energy Procedia 132:399–404
dc.relation.referencesSaltberg A, Brelid H, Lundqvist F (2009) The effect of calcium on kraft delignification – Study of aspen, birch and eucalyptus. Nord Pulp Pap Res J 24:440–447
dc.relation.referencesSamuel J. Record, M.A. M. (1914) The mechanical properties of wood: including a discussion of the factors affecting the mechanical properties, and methods of timber testing, Firts. John Wiley & Sons, Inc, New York
dc.relation.referencesSandberg D, Haller P, Navi P (2013) Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 8:64–88
dc.relation.referencesSchilling M, Farine S, Péros J-P, et al (2021) Chapter Six - Wood degradation in grapevine diseases. In: Morel-Rouhier M, Sormani R (eds) Wood Degradation and Ligninolytic Fungi. Academic Press, pp 175–207
dc.relation.referencesSchneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012 97 9:671–675
dc.relation.referencesSeki M, Yashima Y, Abe M, et al (2022) Influence of delignification on plastic flow deformation of wood. Cellulose 29:4153–4165
dc.relation.referencesShams MI, Yano H, Endou K (2005) Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: effects of sodium chlorite treatment. J Wood Sci 51:234–238
dc.relation.referencesShao Y, Li L, Chen Z, et al (2020) Effects of thermo-hydro-mechanical treatments on various physical and mechanical properties of poplar (Populus) wood. BioResources 15:9596–9610
dc.relation.referencesShi J, Lu Y, Zhang Y, et al (2018) Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood. Sci Reports 2018 81 8:1–9
dc.relation.referencesShi J, Peng J, Huang Q, et al (2020) Fabrication of densified wood via synergy of chemical pretreatment, hot-pressing and post mechanical fixation. J Wood Sci 66:5
dc.relation.referencesSiedlecka A, Wiklund S, Péronne M-A, et al (2008) Pectin Methyl Esterase Inhibits Intrusive and Symplastic Cell Growth in Developing Wood Cells of Populus. Plant Physiol 146:323–324
dc.relation.referencesSikora A, Gaff M, Kumar Sethy A, et al (2021) Bending work of laminated materials based on densified wood and reinforcing components. Compos Struct 274:114319
dc.relation.referencesSkyba O, Schwarze FWMR, Niemz P (2009) Physical and mechanical properties of Thermo-hygromechanically (THM) - Densified wood. Wood Res
dc.relation.referencesSong J, Chen C, Wang C, et al (2017) Superflexible Wood. ACS Appl Mater Interfaces 9:23520–23527
dc.relation.referencesSong J, Chen C, Zhu S, et al (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228
dc.relation.referencesStandfest G, Kutnar A, Plank B, et al (2013) Microstructure of viscoelastic thermal compressed (VTC) wood using computed microtomography. Wood Sci Technol 47:121–139
dc.relation.referencesStirling R, Sturrock RN, Braybrooks A (2017) Fungal decay of western redcedar wood products– a review. Int Biodeterior Biodegradation 125:105–115
dc.relation.referencesStokke DD, Wu Q, Han G (2014) Introduction to wood and natural fiber composites, 1st edn.
dc.relation.referencesSun W, Li J, Yu Y, Zhu S (2016) Application of High Pressure Processing on Fast-growing Chinese Fir. Am Soc Agric Biol Eng 1-
dc.relation.referencesThybring EE (2017) Water relations in untreated and modified wood under brown-rot and white-rot decay. Int Biodeterior Biodegradation 118:134–142
dc.relation.referencesTomak ED, Topaloglu E, Ermeydan MA, Pesman E (2022) Testing the durability of copper based preservative treated bamboos in ground-contact for six years. Cellulose 29:6925–6940
dc.relation.referencesTrenard PY (1977) Étude de la Compressibilité Isostatique de quelques Bois. Holzforschung 31:166–171
dc.relation.referencesVan Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597
dc.relation.referencesVar AA, Kardaş İ (2019) Changes in physical, mechanical, shrinking and swelling properties of pine wood species treated with salt natural geothermal waters as environmentally safe resources. Appl Ecol Environ Res 17:14053 – 14068
dc.relation.referencesVenugopal P, Junninen K, Linnakoski R, et al (2016) Climate and wood quality have decayer-specific effects on fungal wood decomposition. For Ecol Manage 360:341–351
dc.relation.referencesWagih A, Hasani M, Hall SA, Theliander H (2021) Micro/nano-structural evolution in spruce wood during soda pulping. Holzforschung 75:754–764
dc.relation.referencesWang J, Liu J, Li J, Zhu JY (2021) Characterization of microstructure, chemical, and physical properties of delignified and densified poplar wood. Materials (Basel) 14:
dc.relation.referencesWang L, Zhang X, Xu G, et al (2014) Using lignin content, cellulose content, and cellulose crystallinity as indicators of wood decay in Juglans mandshurica Maxim. and Pinus koraiensis. BioResources 9:6205–6213
dc.relation.referencesWang S, Li L, Zha L, et al (2023) Wood xerogel for fabrication of high-performance transparent wood. Nat Commun 14:2827
dc.relation.referencesWeddeling A, Theisen W (2017) Energy and time saving processing: A combination of hot isostatic pressing and heat treatment. Met Powder Rep 72:345–348
dc.relation.referencesWheeler EA (2011) InsideWood - A web resource for hardwood anatomy. In: IAWA Journal. Brill, Leiden, The Netherlands, pp 199–211
dc.relation.referencesWilliam D. Callister DGR (2009) Materials Science and Engineering: An Introduction, 8th Edition - William D. Callister, David G. Rethwisch - Google Books, 8th edn. Wiley
dc.relation.referencesWu J, Wu Y, Yang F, et al (2019) Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos Part A Appl Sci Manuf 117:324–331
dc.relation.referencesXiang E, Feng S, Yang S, Huang R (2020) Sandwich compression of wood: effect of superheated steam treatment on sandwich compression fixation and its mechanisms. Wood Sci Technol 54:1529–1549
dc.relation.referencesXiang E, Li J, Huang R, et al (2022) Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood. Wood Sci Technol 56:899–919
dc.relation.referencesYahyaee SMH, Dastoorian F, Ghorbani M, Zabihzadeh SM (2022) Combined effect of organosolv delignification/polymerization on the set recovery of densified poplar wood. Eur J Wood Wood Prod 80:367–375
dc.relation.referencesYang R, Cao Q, Liang Y, et al (2020) High capacity oil absorbent wood prepared through eco-friendly deep eutectic solvent delignification. Chem Eng J 401:126150
dc.relation.referencesYu Y, Li A, Yan K, et al (2020) High-pressure densification and hydrophobic coating for enhancing the mechanical properties and dimensional stability of soft poplar wood boards. J Wood Sci 66:45
dc.relation.referencesYu Y, Zhang F, Zhu S, Li H (2017) Effects of High-Pressure Treatment on Poplar Wood: Density Profile, Mechanical Properties, Strength Potential Index, and Microstructure. BioResources 12:6283–6297
dc.relation.referencesZhao X, Liu Y, Zhao L, et al (2023) A scalable high-porosity wood for sound absorption and thermal insulation. Nat Sustain 6:306–315
dc.relation.referencesZhuang J, Li M, Pu Y, et al (2020) Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Appl Sci 10:
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.localTesis Doctoral
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameDoctor en Ingeniería
dc.description.degreelevelDoctorado


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International