Show simple item record

Detección de fallas operacionales con redes neuronales artificiales: aplicación del proceso Tennessee Eastman

dc.contributor.authorMorales, Giovanni
dc.contributor.authorReyes Angarita, Sebastian
dc.date.accessioned2024-11-01T13:48:27Z
dc.date.available2024-11-01T13:48:27Z
dc.date.created2023-03-01
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8629
dc.descriptionThe purpose of this article is to compare results of fault detection for the Tennessee Eastman (TE) process with the application of artificial neural networks (ANN). The Neuralnet library of the open-source program R, as well as the Keras library of the open-source program Python were used for the training of ANN. The TE process simulation data were downloaded from Harvard University’s server, and subsequently analyzed, defining the trends in the operational variables during the appearance of failures. With the database, the training and validation of different ANN structures were developed, considering the parameters number of hidden neurons, activation function, and number of hidden layers. According to the results, the training and validation of the ANNs with the Neuralnet library yielded a lower performance in fault detection than that obtained with the Keras library. The ANN with the best performance in detecting failures in the TE process was obtained by the application of the Keras library. This ANN considered 52 input variables, 11 neurons in the hidden layer, and one neuron in the output layer, using a logistic function (ANN represented as 52:11:1 logistic) and reporting a prediction efficiency of 92% for the detection of faults with an external test set, which is convenient for future implementation in industrial processes.eng
dc.descriptionEste artículo tiene como finalidad la comparación de resultados de detección de fallas en el proceso Tennessee Eastman (TE) con redes neuronales artificiales (RNA), utilizando las librerías neuralnet del programa de código abierto R y Keras del programa de código abierto Python. Para esto, los datos de la simulación de proceso TE fueron descargados del servidor de la universidad de Harvard, y posteriormente analizados, definiendo las tendencias en las variables operacionales ante las respectivas fallas. Con la base de datos, el entrenamiento y la validación de diferentes estructuras de RNA fue desarrollado considerando los parámetros: número de neuronas ocultas, función de activación y número de capas ocultas. Según los resultados, el entrenamiento y la validación de las RNA con la librería neuralnet reportó menores desempeños de detección de fallas, que las obtenidas con la librería Keras. La RNA de mejor desempeño en la detección de fallas del proceso TE correspondió a la estructura 52 variables de entrada, 11 neuronas en la capa oculta y una neurona en la capa de salida, con función logística y entrenada con la librería Keras (RNA representada como 52:11:1 logistic). Esta RNA presenta una eficiencia en la predicción del 92% para la detección de fallas en un conjunto externo de prueba, lo que resulta conveniente en una futura implementación en procesos industriales.spa
dc.format.extentp. 1-19
dc.format.mediumElectrónico
dc.format.mimetypePDF
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 23 No. 44 (2024)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 23 Núm. 44 enero-junio 2024
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/4622
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 22 No. 42 (2023): (enero-junio); 1-19
dc.subjectArtificial neural networkeng
dc.subjectTennessee Eastman processeng
dc.subjectFaultseng
dc.subjectFault detectioneng
dc.subjectFault predictioneng
dc.subjectProcess dataeng
dc.subjecttraining of ANNeng
dc.subjectNeuralneteng
dc.subjectKeraseng
dc.subjectRed neuronal artificialspa
dc.subjectProceso Tennessee Eastmanspa
dc.subjectFallasspa
dc.subjectDetección de fallasspa
dc.subjectPredicción de fallasspa
dc.subjectDatos de procesospa
dc.subjectEntrenamiento de RNAspa
dc.subjectNeuralnetspa
dc.subjectKerasspa
dc.titleDetection of operational failures with artificial neural networks: application to the Tennessee Eastman processeng
dc.titleDetección de fallas operacionales con redes neuronales artificiales: aplicación del proceso Tennessee Eastmanspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v23n44a1
dc.relation.citationvolume23
dc.relation.citationissue44
dc.relation.citationstartpage1
dc.relation.citationendpage19
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesJ. A. Ramírez, H. O. Sarmiento, and J. M. López, 'Diagnóstico de Fallas En Procesos Industriales Mediante Inteligencia Artificial'. Revista Espacios, vol. 39, no. 24, pp.16, 2018.
dc.relation.referencesM. A. Turk, and A. Mishra. 'Process safety management: Going beyond functional safety'. Hydrocarbon Processing, vol. 92, no. 3, pp. 55-63, March 2013.
dc.relation.referencesR. Rivas, P. Zubieta, and H. Garcini, 'Detección y Diagnóstico Automático de Fallos En Procesos Industriales'. Ingeniería electrónica, Automática y Comunicaciones, volumen XXIII, no. 3, 2002.
dc.relation.referencesE. E. Tarifa, and S. L. Martinez. 2007, 'Diagnostico de Fallas Con Redes Neuronales. Parte 1: Reconocimiento de Trayectorias'. Revistas electrónicas UN ingeniería e Investigación, vol. 27, no.1, pp. 68-76, Abril 2007.
dc.relation.referencesH. Hassanpour, B. Corbett, and P. Mhaskar, 'Artificial Neural Network-Based Model Predictive Control Using Correlated Data'. Industrial & Engineering Chemistry Research, vol. 61, no. 8, pp. 3075-3090, 2022, https://doi.org/10.1021/acs.iecr.1c04339.
dc.relation.referencesY. Shin, R Smith, and S. Hwang, 'Development of model predictive control system using an artificial neural network: A case study with a distillation column'. Journal of Cleaner Production, vol. 277, pp. 124124, 2020, https://doi.org/10.1016/j.jclepro.2020.124124.
dc.relation.referencesR. Arunthavanathan, F. Khan, S. Ahmed, S. Imtiaz, and R. Rusli, 'Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique'. Computers & Chemical Engineering, vol. 134, pp. 106697, 2019, https://doi.org/10.1016/j.compchemeng.2019.106697.
dc.relation.referencesA. Melo, M.M. Câmara, J.C. Pinto, 'Data-Driven Process Monitoring and Fault Diagnosis: A Comprehensive Survey'. Processes, Vol. 12, no. 2, pp. 251, 2024, https://doi.org/10.3390/pr12020251
dc.relation.referencesS. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, 'A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process'. Journal of Process Control, Vol. 22, no. 9, pp. 1567-1581, 2012, https://doi.org/10.1016/j.jprocont.2012.06.009
dc.relation.referencesJ. Yu, Y. Zhang, 'Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review'. Neural Comput & Applic, Vol. 35, pp. 211-252, 2023, https://doi.org/10.1007/s00521-022-08017-3
dc.relation.referencesD. Divya, B. Marath, M.B. Santosh Kumar, 'Review of fault detection techniques for predictive maintenance'. Journal of Quality in Maintenance Engineering, Vol. 29, no. 2, pp. 420-441, 2023, https://doi.org/10.1108/JQME-10-2020-0107
dc.relation.referencesL.H. Chiang, E.L. Russell, R.D. Braatz, 'Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis'. Chemometrics and Intelligent Laboratory Systems, Vol. 50, no. 2, pp. 243-252, 2000, https://doi.org/10.1016/s0169-7439(99)00061-1
dc.relation.referencesY. Lei, B. Yang, X. Jiang, F. Jia, N. Li, A.K. Nandi, 'Applications of machine learning to machine fault diagnosis: A review and roadmap'. Mechanical Systems and Signal Processing, Vol. 138, 106587, 2020, https://doi.org/10.1016/j.ymssp.2019.106587
dc.relation.referencesA. Yadav, and Y, Dash, 'An overview of transmission line protection by artificial neural network: fault detection, fault classification, fault location, and fault direction discrimination'. Advances in Artificial Neural Systems, vol. 1, pp. 6, 2014, http://dx.doi.org/10.1155/2014/230382
dc.relation.referencesJ. Hong, J. Qu, W. Tian, Z. Cui, Z. Liu, Y. Lin, and C. Li, 'Identification of Unknown Abnormal Conditions in Catalytic Cracking Process Based on Two-Step Clustering Analysis and Signed Directed Graph'. Processes, vol. 9, no.11, pp. 2055, 2021, https://doi.org/10.3390/pr9112055
dc.relation.referencesG. Taira, S. Park, A. Zanin, and C. Porfirio, 'Fault detection in a fluid catalytic cracking process using Bayesian recurrent neural network'. IFAC PapersOnLine, vol. 55, no.7, pp. 715-720, 2022, https://doi.org/10.1016/j.ifacol.2022.07.528
dc.relation.referencesV. Venkatasubramanian, K. Chan, 'A neural network methodology for process fault diagnosis'. AIChE Journal, vol. 35, no 12, p. 1993-2002, 1989, https://doi.org/10.1002/aic.690351210
dc.relation.referencesL. Chiang, E. Russell, and R. Braatz, 'Fault Detection and Diagnosis in Industrial Systems', Londres, Springer Science & Business Media, 2000, https://doi.org/10.1007/978-1-4471-0347-9
dc.relation.referencesJ. Hong, J. Qu, W. Tian, Z. Cui, Z. Liu, Y. Lin, and C. Li, 'Identification of Unknown Abnormal Conditions in Catalytic Cracking Process Based on Two-Step Clustering Analysis and Signed Directed Graph'. Processes, vol. 9, no.11, pp. 2055, 2021, https://doi.org/10.3390/pr9112055
dc.relation.referencesU. Sarwar, M. Muhammad, A. A. Mokhtar, R. Khan, P. Behrani, S. Kaka, 'Hybrid intelligence for enhanced fault detection and diagnosis for industrial gas turbine engine'. Results in Engineering, vol. 21, 101841, 2024, https://doi.org/10.1016/j.rineng.2024.101841
dc.relation.referencesA.O. e Souza, M.B. de Souza, F.V. da Silva, 'Enhancing fault detection and diagnosis systems for a chemical process: a study on convolutional neural networks and transfer learning'. Evolving Systems, vol. 15, pp. 611-633, 2024, https://doi.org/10.1007/s12530-023-09523-y
dc.relation.referencesS. Lu, J. Lu, K. An, X. Wang, Q. He, 'Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review'. IEEE Internet of Things Journal, vol. 10, no. 13, pp. 1109311116, 2023, https://doi.org/10.1109/JIOT.2023.3239944
dc.relation.referencesF. Günther, and S. Fritsch. 'Neuralnet: training of neural networks'. R Journal, vol. 2, no. 1, pp. 30-38, 2010, https://doi.org/10.32614/RJ-2010-006
dc.relation.referencesG. Iannace, G. Ciaburro, and A. Trematerra, 'Neural Networks Model to Detect Wind Turbine Dynamics'. International Journal of Automation and Smart Technology, 2020, vol. 10, no 1, pp. 145-152, 2020, https://doi.org/10.5875/ausmt.v10i1.2225
dc.relation.referencesJ.-L. Kang, 'Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks'. Journal of the Taiwan Institute of Chemical Engineers, vol. 112, pp. 137-151, 2020, https://doi.org/10.1016/j.jtice.2020.06.016.
dc.relation.referencesS. Chen, J. Yu, and S. Wang, 'One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes'. Journal of Process Control, vol.87, pp.54-67, 2020, https://doi.org/10.1016/j.jprocont.2020.01.004.
dc.relation.referencesS. Sano, T. Kadowaki, K. Tsuda, and S. Kimura, 'Application of Bayesian Optimization for Pharmaceutical Product Development'. Journal of Pharmaceutical Innovation, vol. 15, pp. 333-343. 2020, https://doi.org/10.1007/s12247-019-09382-8.
dc.relation.referencesA. Zolfaghari, and M. Izadi, 'Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network'. Journal Pressure Vessel Technology, vol. 142, no. 3, pp. 031303, 2020, https://doi.org/10.1115/1.4045729.
dc.relation.referencesM. Fernández-Delgado, M. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and M. Febrero-Bande, 'An extensive experimental survey of regression methods'. Neural Networks, vol. 111, pp. 11-34, 2019, https://doi.org/10.1016/j.neunet.2018.12.010
dc.relation.referencesH. González, and H. Martínez, 'Redes Neuronales Artificiales: Fundamentos, modelos y aplicaciones', Madrid, 2000.
dc.relation.referencesP. Isasi, and I. Galván, 'Redes de neuronas artificiales. Un Enfoque Práctico', Editorial Pearson Educación SA Madrid España, 2004.
dc.relation.referencesJ. J. Downs, and E. Vogel, 'A plant-wide industrial process control problem'. Com puters & Chemical Engineering, vol. 17, no.3, pp. 245-255, March 1993, https://doi.org/10.1016/0098-1354(93)80018-I.
dc.relation.referencesE. Andersen, I. Udugama, K. Gernaey, C. Bayer, and M. Kulahci, 'Big Data Generation for Time Dependent Processes: The Tennessee Eastman Process for Generating Large Quantities of Process Data'. Computer Aided Chemical Engineering , vol. 48, pp. 1309-1314, 2020, https://doi.org/10.1016/B978-0-12-823377-1.50219-6.
dc.relation.referencesS. Yin, S. Ding, A. Haghani, H. Hao, and P. Zhang, 'A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process'. Journal of Process Control, vol. 22, no.9, pp. 1567-1581, 2012, https://doi.org/10.1016/j.jprocont.2012.06.009.
dc.relation.referencesS. Heo, and J. Lee, 'Fault detection and classification using artificial neural networks'. IFAC PapersOnLine, vol. 51, no. 18, pp. 470-475, 2018, https://doi.org/10.1016/j.ifacol.2018.09.380.
dc.relation.referencesN. Basha, C. Kravaris, H. Nounou, and M. Nounou, 'Bayesian-optimized Gaussian process based fault classification in industrial processes'. Computers Chemical Engineering, vol. 170, pp. 108126, 2023, https://doi.org/10.1016/j.compchemeng.2022.108126.
dc.relation.referencesC. Rieth, B. Amsel, R Tran, and M. Cook, 'Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation'. Harvard Dataverse: vol. 1, 2017, https://doi.org/10.7910/DVN/6C3JR1
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International