Show simple item record

dc.contributor.authorAguilar-Maruri S.A.
dc.contributor.authorPerera-Triana D.
dc.contributor.authorFlórez E.
dc.contributor.authorForgionny A.
dc.contributor.authorPalestino G.
dc.contributor.authorGómez-Durán C.F.A.
dc.contributor.authorOcampo-Pérez R.
dc.date.accessioned2024-12-27T20:51:43Z
dc.date.available2024-12-27T20:51:43Z
dc.date.created2024
dc.identifier.issn22279717
dc.identifier.urihttp://hdl.handle.net/11407/8682
dc.descriptionMetformin, widely prescribed to treat type 2 diabetes for its effectiveness and low cost, has raised concerns about its presence in aqueous effluents and its potential environmental and public health impacts. To address this issue, xerogels were synthesized from resorcinol and formaldehyde, with molar ratios ranging from 0.05 to 0.40. These xerogels were thoroughly characterized using FT-IR, SEM, TGA, and TEM analyses. Batch adsorption experiments were performed with standard metformin solutions at concentrations of 50 and 500 mg/L, varying pH, and temperature to determine the adsorption isotherms of the synthesized xerogels. The adsorption data revealed a maximum adsorption capacity of 325 mg/g at pH 11 and 25 °C. Quantum chemical calculations revealed that electrostatic interactions govern metformin adsorption onto xerogels. The xerogels’ adsorption capacity was evaluated in competitive systems with CaCl2, NaCl, MgCl2, and synthetic urines. Reuse cycles demonstrated that xerogels could be reused for up to three cycles without any loss in adsorptive efficiency. The adsorption mechanisms of metformin in the adsorption process highlight the strong electrostatic interactions and hydrogen bonds between the adsorbate and the adsorbent material. Xerogels synthesized show promise as efficient adsorbents to remove metformin from aqueous solutions, helping to mitigate its environmental impact. © 2024 by the authors.
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85199643501&doi=10.3390%2fpr12071431&partnerID=40&md5=768193e62619512768aec6a41bb33135
dc.sourceProcesses
dc.sourceProcess.
dc.sourceScopus
dc.subjectAdsorptioneng
dc.subjectMetformineng
dc.subjectXerogelseng
dc.subjectAdsorption isothermseng
dc.subjectEffluentseng
dc.subjectElectrostaticseng
dc.subjectHydrogen bondseng
dc.subjectMagnesium compoundseng
dc.subjectMolar ratioeng
dc.subjectQuantum chemistryeng
dc.subjectSodium chlorideeng
dc.subjectAdsorption capacitieseng
dc.subjectAqueous effluenteng
dc.subjectExperimental approacheseng
dc.subjectHealth impacteng
dc.subjectLow-costseng
dc.subjectMetforminseng
dc.subjectOrganicseng
dc.subjectSynthesisedeng
dc.subjectTheoretical approacheng
dc.subjectType-2 diabeteseng
dc.subjectAdsorptioneng
dc.titleHighly Adsorptive Organic Xerogels for Efficient Removal of Metformin from Aqueous Solutions: Experimental and Theoretical Approacheng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo de revista
dc.identifier.doi10.3390/pr12071431
dc.relation.citationvolume12
dc.relation.citationissue7
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationAguilar-Maruri S.A., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationPerera-Triana D., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationFlórez E., Grupo de Investigación de Materiales con Impacto (MATMPAC), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationForgionny A., Grupo de Investigación de Materiales con Impacto (MATMPAC), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationPalestino G., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationGómez-Durán C.F.A., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.affiliationOcampo-Pérez R., Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
dc.relation.referencesForetz M., Guigas B., Bertrand L., Pollak M., Viollet B., Metformin: From Mechanisms of Action to Therapies, Cell Metab, 20, pp. 953-966, (2014)
dc.relation.referencesHernandez B., Pfluger F., Kruglik S.G., Cohen R., Ghomi M., Protonation–deprotonation and structural dynamics of antidiabetic drug metformin, J. Pharm. Biomed. Anal, 114, pp. 42-48, (2015)
dc.relation.referencesBalakrishnan A., Sillanpaa M., Jacob M.M., Vo D.-V.N., Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods, Environ. Res, 213, (2022)
dc.relation.referencesDesai D., Wong B., Huang Y., Ye Q., Tang D., Guo H., Huang M., Timmins P., Surfactant-Mediated Dissolution of Metformin Hydrochloride Tablets: Wetting Effects Versus Ion Pairs Diffusivity, J. Pharm. Sci, 103, pp. 920-926, (2014)
dc.relation.referencesBoehm H.P., Diehl E., Heck W., Sappok R., Surface Oxides of Carbon, Angew. Chem. Int. Ed. Engl, 3, pp. 669-677, (1964)
dc.relation.referencesRamirez-Muniz K., Song S., Berber-Mendoza S., Tong S., Adsorption of the complex ion Au(CN)2- onto sulfur-impregnated activated carbon in aqueous solutions, J. Colloid Interface Sci, 349, pp. 602-606, (2010)
dc.relation.referencesSarigul N., Korkmaz F., Kurultak I., A New Artificial Urine Protocol to Better Imitate Human Urine, Sci. Rep, 9, (2019)
dc.relation.referencesOcampo-Perez R., Leyva-Ramos R., Sanchez-Polo M., Rivera-Utrilla J., Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon, Adsorption, 19, pp. 945-957, (2013)
dc.relation.referencesFrisch M.J., Hiscocks J., Gaussian 09, (2009)
dc.relation.referencesAl-Muhtaseb S.A., Ritter J.A., Preparation and Properties of Resorcinol–Formaldehyde Organic and Carbon Gels, Adv. Mater, 15, pp. 101-114, (2003)
dc.relation.referencesPekala R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci, 24, pp. 3221-3227, (1989)
dc.relation.referencesHeidari B.S., Cheraghchi V.-S., Motahari S., Motlagh G.H., Davachi S.M., Optimized mercapto-modified resorcinol formaldehyde xerogel for adsorption of lead and copper ions from aqueous solutions, J. Sol-Gel Sci. Technol, 88, pp. 236-248, (2018)
dc.relation.referencesKhamkure S., Gamero-Melo P., Garrido-Hoyos S.E., Reyes-Rosas A., Pacheco-Catalan D.-E., Lopez-Martinez A.M., The Development of Fe<sub>3</sub>O<sub>4</sub>-Monolithic Resorcinol-Formaldehyde Carbon Xerogels Using Ultrasonic-Assisted Synthesis for Arsenic Removal of Drinking Water, Gels, 9, (2023)
dc.relation.referencesFicanha A.M.M., Oro C.E.D., Franceschi E., Dallago R.M., Mignoni M.L., Evaluation of Different Ionic Liquids as Additives in the Immobilization of Lipase CAL B by Sol-Gel Technique, Appl. Biochem. Biotechnol, 193, pp. 2162-2181, (2021)
dc.relation.referencesGaikwad M.M., Kakunuri M., Sharma C.S., Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery, Mater. Today Commun, 20, (2019)
dc.relation.referencesAlAreeqi S., Bahamon D., Polychronopoulou K., Vega L.F., Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions, Carbon, 196, pp. 840-866, (2022)
dc.relation.referencesSundqvist B., Carbon under pressure, Phys. Rep, 909, pp. 1-73, (2021)
dc.relation.referencesBystrzejewski M., Lange H., Huczko A., Elim H., Ji W., Study of the optical limiting properties of carbon-encapsulated magnetic nanoparticles, Chem. Phys. Lett, 444, pp. 113-117, (2007)
dc.relation.referencesGorman M., The evidence from infrared spectroscopy for hydrogen bonding: A case history of the correlation and interpretation of data, J. Chem. Educ, 34, (1957)
dc.relation.referencesLong D.A., Infrared and Raman characteristic group frequencies. Tables and charts George Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price pound sterling 135, J. Raman Spectrosc, 35, (2004)
dc.relation.referencesComi M., Fernandez M., Santamaria A., Lligadas G., Ronda J.C., Galia M., Cadiz V., Carboxylic Acid Ionic Modification of Castor-Oil-Based Polyurethanes Bearing Amine Groups: Chemically Tunable Physical Properties and Recyclability, Macromol. Chem. Phys, 218, (2017)
dc.relation.referencesZhu S., Liu Y.-G., Liu S.-B., Zeng G.-M., Jiang L.-H., Tan X.F., Zhou L., Zeng W., Li T.-T., Yang C.-P., Adsorption of emerging contaminant metformin using graphene oxide, Chemosphere, 179, pp. 20-28, (2017)
dc.relation.referencesBalasubramani K., Sivarajasekar N., Naushad M., Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling, J. Mol. Liq, 301, (2020)
dc.relation.referencesKyzas G.Z., Nanaki S.G., Koltsakidou A., Papageorgiou M., Kechagia M., Bikiaris D.N., Lambropoulou D.A., Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media, Anal. Chim. Acta, 866, pp. 27-40, (2015)
dc.relation.referencesSpessato L., Duarte V.A., Viero P., Zanella H., Fonseca J.M., Arroyo P.A., Almeida V.C., Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous adsorption of rhodamine B and metformin, J. Hazard. Mater, 411, (2021)
dc.relation.referencesSanchez-Silva J.M., Collins-Martinez V.H., Padilla-Ortega E., Aguilar-Aguilar A., Labrada-Delgado G.J., Gonzalez-Ortega O., Palestino-Escobedo G., Ocampo-Perez R., Characterization and transformation of nanche stone (Byrsonima crassifolia) in an activated hydrochar with high adsorption capacity towards metformin in aqueous solution, Chem. Eng. Res. Des, 183, pp. 580-594, (2022)
dc.relation.referencesDave P.N., Kamaliya B., Macwan P.M., Trivedi J.H., Fabrication and characterization of a gum ghatti-cl-poly(N-isopropyl acrylamide-co-acrylic acid)/CoFe<sub>2</sub>O<sub>4</sub> nanocomposite hydrogel for metformin hydrochloride drug removal from aqueous solution, Curr. Res. Green Sustain. Chem, 6, (2023)
dc.relation.referencesSzalewicz K., Hydrogen Bond, in Encyclopedia of Physical Science and Technology, pp. 505-538, (2003)
dc.relation.referencesFu L., Li J., Wang G., Luan Y., Dai W., Adsorption behavior of organic pollutants on microplastics, Ecotoxicol. Environ. Saf, 217, (2021)
dc.relation.referencesBadran I., Hassan A., Manasrah A.D., Nassar N.N., Experimental and theoretical studies on the thermal decomposition of metformin, J. Therm. Anal. Calorim, 138, pp. 433-441, (2019)
dc.relation.referencesAdnan, Omer M., Khan B., Khan I., Alamzeb M., Zada F.M., Ullah I., Shah R., Alqarni M., Simal-Gandara J., Equilibrium, Kinetic and Thermodynamic Studies for the Adsorption of Metanil Yellow Using Carbonized Pistachio Shell-Magnetic Nanoparticles, Water, 14, (2022)
dc.relation.referencesAljamali N., Khdur R., Alfatlawi I., Physical and Chemical Adsorption and its Applications, Int. J. Thermodyn. Chem. Kinet, 7, pp. 1-8, (2021)
dc.relation.referencesDe Gisi S., Lofrano G., Grassi M., Notarnicola M., Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustain. Mater. Technol, 9, pp. 10-40, (2016)
dc.relation.referencesKlonkowski A.M., Grobelna B., Widernik T., Jankowska-Frydel A., Mozgawa W., The Coordination State of Copper(II) Complexes Anchored and Grafted onto the Surface of Organically Modified Silicates, Langmuir, 15, pp. 5814-5819, (1999)
dc.relation.referencesTorres C.E.I., Quezada T.E.S., Kharissova O.V., Kharisov B.I., de la Fuente M.I.G., Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations, J. Environ. Chem. Eng, 9, (2021)
dc.relation.referencesSun A., Hou X., Hu X., Super-performance photothermal conversion of 3D macrostructure graphene-CuFeSe<sub>2</sub> aerogel contributes to durable and fast clean-up of highly viscous crude oil in seawater, Nano Energy, 70, (2020)
dc.relation.referencesZou C.-Y., Ji W., Shen Z., Tang Q., Fan M., NH<sub>3</sub> molecule adsorption on spinel-type ZnFe<sub>2</sub>O<sub>4</sub> surface: A DFT and experimental comparison study, Appl. Surf. Sci, 442, pp. 778-786, (2018)
dc.relation.referencesSerna-Carrizales J.C., Zarate-Guzman A.I., Aguilar-Aguilar A., Forgionny A., Bailon-Garcia E., Florez E., Gomez-Duran C.F.A., Ocampo-Perez R., Optimization of Binary Adsorption of Metronidazole and Sulfamethoxazole in Aqueous Solution Supported with DFT Calculations, Processes, 11, (2023)
dc.relation.referencesForgionny A., Acelas N.Y., Jimenez-Orozco C., Florez E., Toward the design of efficient adsorbents for Hg<sup>2+</sup> removal: Molecular and thermodynamic insights, Int. J. Quantum Chem, 120, (2020)
dc.relation.referencesRubtsov I.V., Kumar K., Hochstrasser R.M., Dual-frequency 2D IR photon echo of a hydrogen bond, Chem. Phys. Lett, 402, pp. 439-443, (2005)
dc.relation.referencesKafle B.P., Chapter 6—Introduction to nanomaterials and application of UV–Visible spectroscopy for their characterization, Chemical Analysis and Material Characterization by Spectrophotometry, pp. 147-198, (2020)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record