Show simple item record

dc.contributor.authorUgarte J.P.
dc.contributor.authorTobón C.
dc.date.accessioned2024-12-27T20:52:01Z
dc.date.available2024-12-27T20:52:01Z
dc.date.created2024
dc.identifier.issn24058971
dc.identifier.urihttp://hdl.handle.net/11407/8697
dc.descriptionAtrial fibrillation is a cardiac disorder marked by rapid and disorganized electrical activity, leading to atrial mechanical dysfunction. The alterations in electrophysiological properties during this arrhythmia are not solely attributed to electrical remodeling, structural changes in atrial tissue are also involved. This work aims to formulate a mathematical model for fibrillatory electrical conduction through the implementation of variable-order fractional derivatives. The adoption of such an operator is intended to represent the process of structural remodeling, which has been related to the course of atrial fibrillation. Simulations are performed using a simplified model of the ionic kinetics of the cardiac cell membrane, which allows for distinct electrophysiological properties through its parameterization. For the variable order, a fluctuating function is adopted that can be interpreted as the progression of structural remodeling when the order decreases, and the reverse process when the order increases. Fibrillatory propagation is initiated by generating reentrant conduction, also known as a rotor. We observed that, on the one hand, electrical conduction becomes chaotic as the fractional order decreases, and persists under such dynamics while the order increases. On the other hand, rotational activity persists during the fluctuation of the fractional order. Such mesoscopic outcomes depend on the sensitivity of the microscopic electrophysiological properties to the variations of the fractional order. Moreover, both propagation patterns can be associated with the known course of clinical AF. These results suggest that the fractional order model of cardiac electrophysiology may provide insight into the AF underlying mechanisms. © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
dc.language.isoeng
dc.publisherInternational Federation of Automatic Control (IFAC) - Linear Control Systems, TC 2.2.; International Federation of Automatic Control (IFAC) - TC 1.1. Modelling, Identification and Signal Processing; International Federation of Automatic Control (IFAC) - TC 2.1. Control Design; International Federation of Automatic Control (IFAC) - TC 2.5. Robust Control; International Federation of Automatic Control (IFAC) - TC 4.2. Mechatronic Systems
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85203068225&doi=10.1016%2fj.ifacol.2024.08.164&partnerID=40&md5=c9a448632c779d2b50d1c8dc6938912f
dc.sourceIFAC-PapersOnLine
dc.sourceIFAC-PapersOnLine
dc.sourceScopus
dc.subjectDominant frequencyeng
dc.subjectFractional-space reaction-diffusion equationeng
dc.subjectRotorseng
dc.subjectSimulation of cardiac electrophysiologyeng
dc.subjectBiomedical engineeringeng
dc.subjectLinear equationseng
dc.subjectPartial differential equationseng
dc.subjectPolynomialseng
dc.subjectSurface dischargeseng
dc.subjectVortex floweng
dc.subjectAtrial fibrillationeng
dc.subjectCardiac electrophysiologyeng
dc.subjectDominant frequencyeng
dc.subjectElectrical conductioneng
dc.subjectElectrophysiological propertieseng
dc.subjectFractional ordereng
dc.subjectFractional-space reaction-diffusion equationeng
dc.subjectReaction diffusion equationseng
dc.subjectSimulation of cardiac electrophysiologyeng
dc.subjectVariables orderingeng
dc.subjectHearteng
dc.titleVariable-Order Model of Cardiac Fibrillationeng
dc.typeConference paper
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaDocumento de conferencia
dc.identifier.doi10.1016/j.ifacol.2024.08.164
dc.relation.citationvolume58
dc.relation.citationissue12
dc.relation.citationstartpage43
dc.relation.citationendpage48
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationUgarte J.P., GIMSC, Universidad de San Buenaventura, Medellin, Colombia
dc.affiliationTobón C., MATBIOM, Universidad de Medellín, Medellin, Colombia
dc.relation.referencesAndrade M.C., Porsani M.J., Ursin B., Complex Autoregressive Time-Frequency Analysis: Estimation of Time-Varying Periodic Signal Components, IEEE Signal Processing Magazine, 35, 2, pp. 142-153, (2018)
dc.relation.referencesBers D.M., Grandi E., Human Atrial Fibrillation: Insights form computational electrophysiological models, Trends in Cardiovascular Medicine, 21, 5, pp. 145-150, (2012)
dc.relation.referencesBray M.A., Lin S.F., Aliev R.R., Roth B.J., Wikswo J.P., Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue, Journal of Cardiovascular Electrophysiology, 12, 6, pp. 716-722, (2001)
dc.relation.referencesElvan A., Adiyaman A., Beukema R.J., Sie H.T., Allessie M.A., Electrophysiological effects of acute atrial stretch on persistent atrial fibrillation in patients undergoing open heart surgery, Heart Rhythm, 10, 3, pp. 322-330, (2013)
dc.relation.referencesFenton F.H., Cherry E.M., Hastings H.M., Evans S.J., Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity, Chaos, 12, 3, pp. 852-892, (2002)
dc.relation.referencesHeijman J., Linz D., Schotten U., Dynamics of Atrial Fibrillation Mechanisms and Comorbidities, Annual Review of Physiology, 83, pp. 83-106, (2021)
dc.relation.referencesHuang J.L., Tai C.T., Lin Y.J., Ting C.T., Chen Y.T., Chang M.S., Lin F.Y., Lai W.T., Chen S.A., The mechanisms of an increased dominant frequency in the left atrial posterior wall during atrial fibrillation in acute atrial dilatation, Journal of Cardiovascular Electrophysiology, 17, 2, pp. 178-188, (2006)
dc.relation.referencesKalifa J., Jalife J., Zaitsev A.V., Bagwe S., Warren M., Moreno J., Berenfeld O., Nattel S., Intraatrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation, Circulation, 108, 6, pp. 668-671, (2003)
dc.relation.referencesOrtigueira M.D., Valerio D., Machado J.T., Variable order fractional systems, Communications in Nonlinear Science and Numerical Simulation, 71, pp. 231-243, (2019)
dc.relation.referencesPathak R., Lau D.H., Mahajan R., Sanders P., Structural and functional remodeling of the left atrium: Clinical and therapeutic implications for atrial fibrillation, Journal of Atrial Fibrillation, 6, 4, pp. 53-64, (2013)
dc.relation.referencesThanigaimani S., McLennan E., Linz D., Mahajan R., Agbaedeng T.A., Lee G., Kalman J.M., Sanders P., Lau D.H., Progression and reversibility of stretch induced atrial remodeling: Characterization and clinical implications, Progress in Biophysics and Molecular Biology, 130, pp. 376-386, (2017)
dc.relation.referencesUgarte J.P., Tobon C., Tenreiro Machado J.A., A computational view of electrophysiological properties under different atrial fibrosis conditions, Applied Mathematical Modelling, 105, pp. 534-550, (2022)
dc.relation.referencesVerheule S., Schotten U., Electrophysiological consequences of cardiac fibrosis, Cells, 10, 11, (2021)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín
dc.contributor.event12th IFAC Conference on Fractional Differentiation and its Applications, ICFDA 2024


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record