REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probabilistic Cascade Modeling for Enhanced Flood and Landslide Hazard Assessment: Integrating Multi-Model Approaches in the La Liboriana River Basin

Thumbnail
Share this
Date
2024
Author
Vega J.
Ortiz-Giraldo L.
Botero B.A.
Hidalgo C.
Parra J.C.

Citación

       
TY - GEN T1 - Probabilistic Cascade Modeling for Enhanced Flood and Landslide Hazard Assessment: Integrating Multi-Model Approaches in the La Liboriana River Basin Y1 - 2024 UR - http://hdl.handle.net/11407/8700 AB - Extreme rainfall events in Andean basins frequently trigger landslides, obstructing river channels and causing flash flows, loss of lives, and economic damage. This study focused on improving the modeling of these events to enhance risk management, specifically in the La Liboriana basin in Salgar (Colombia). A cascading modeling methodology was developed, integrating the spatially distributed rainfall intensities, hazard zoning with the SLIDE model, propagation modeling with RAMMS using calibrated soil rheological parameters, the distributed hydrological model TETIS, and flood mapping with IBER. Return periods of 2.33, 5, 10, 25, 50, and 100 years were defined and applied throughout the methodology. A specific extreme event (18 May 2015) was modeled for calibration and comparison. The spatial rainfall intensities indicated maximum concentrations in the northwestern upper basin and southeastern lower basin. Six landslide hazard maps were generated, predicting landslide-prone areas with a slightly above random prediction rate for the 2015 event. The RAMMS debris flow modeling involved 30 simulations, indicating significant deposition within the river channel and modifying the terrain. Hydraulic modeling with the IBER model revealed water heights ranging from 0.23 to 7 m and velocities from 0.34 m/s to 6.98 m/s, with urban areas showing higher values, indicating increased erosion and infrastructure damage potential. © 2024 by the authors. ER - @misc{11407_8700, author = {}, title = {Probabilistic Cascade Modeling for Enhanced Flood and Landslide Hazard Assessment: Integrating Multi-Model Approaches in the La Liboriana River Basin}, year = {2024}, abstract = {Extreme rainfall events in Andean basins frequently trigger landslides, obstructing river channels and causing flash flows, loss of lives, and economic damage. This study focused on improving the modeling of these events to enhance risk management, specifically in the La Liboriana basin in Salgar (Colombia). A cascading modeling methodology was developed, integrating the spatially distributed rainfall intensities, hazard zoning with the SLIDE model, propagation modeling with RAMMS using calibrated soil rheological parameters, the distributed hydrological model TETIS, and flood mapping with IBER. Return periods of 2.33, 5, 10, 25, 50, and 100 years were defined and applied throughout the methodology. A specific extreme event (18 May 2015) was modeled for calibration and comparison. The spatial rainfall intensities indicated maximum concentrations in the northwestern upper basin and southeastern lower basin. Six landslide hazard maps were generated, predicting landslide-prone areas with a slightly above random prediction rate for the 2015 event. The RAMMS debris flow modeling involved 30 simulations, indicating significant deposition within the river channel and modifying the terrain. Hydraulic modeling with the IBER model revealed water heights ranging from 0.23 to 7 m and velocities from 0.34 m/s to 6.98 m/s, with urban areas showing higher values, indicating increased erosion and infrastructure damage potential. © 2024 by the authors.}, url = {http://hdl.handle.net/11407/8700} }RT Generic T1 Probabilistic Cascade Modeling for Enhanced Flood and Landslide Hazard Assessment: Integrating Multi-Model Approaches in the La Liboriana River Basin YR 2024 LK http://hdl.handle.net/11407/8700 AB Extreme rainfall events in Andean basins frequently trigger landslides, obstructing river channels and causing flash flows, loss of lives, and economic damage. This study focused on improving the modeling of these events to enhance risk management, specifically in the La Liboriana basin in Salgar (Colombia). A cascading modeling methodology was developed, integrating the spatially distributed rainfall intensities, hazard zoning with the SLIDE model, propagation modeling with RAMMS using calibrated soil rheological parameters, the distributed hydrological model TETIS, and flood mapping with IBER. Return periods of 2.33, 5, 10, 25, 50, and 100 years were defined and applied throughout the methodology. A specific extreme event (18 May 2015) was modeled for calibration and comparison. The spatial rainfall intensities indicated maximum concentrations in the northwestern upper basin and southeastern lower basin. Six landslide hazard maps were generated, predicting landslide-prone areas with a slightly above random prediction rate for the 2015 event. The RAMMS debris flow modeling involved 30 simulations, indicating significant deposition within the river channel and modifying the terrain. Hydraulic modeling with the IBER model revealed water heights ranging from 0.23 to 7 m and velocities from 0.34 m/s to 6.98 m/s, with urban areas showing higher values, indicating increased erosion and infrastructure damage potential. © 2024 by the authors. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Extreme rainfall events in Andean basins frequently trigger landslides, obstructing river channels and causing flash flows, loss of lives, and economic damage. This study focused on improving the modeling of these events to enhance risk management, specifically in the La Liboriana basin in Salgar (Colombia). A cascading modeling methodology was developed, integrating the spatially distributed rainfall intensities, hazard zoning with the SLIDE model, propagation modeling with RAMMS using calibrated soil rheological parameters, the distributed hydrological model TETIS, and flood mapping with IBER. Return periods of 2.33, 5, 10, 25, 50, and 100 years were defined and applied throughout the methodology. A specific extreme event (18 May 2015) was modeled for calibration and comparison. The spatial rainfall intensities indicated maximum concentrations in the northwestern upper basin and southeastern lower basin. Six landslide hazard maps were generated, predicting landslide-prone areas with a slightly above random prediction rate for the 2015 event. The RAMMS debris flow modeling involved 30 simulations, indicating significant deposition within the river channel and modifying the terrain. Hydraulic modeling with the IBER model revealed water heights ranging from 0.23 to 7 m and velocities from 0.34 m/s to 6.98 m/s, with urban areas showing higher values, indicating increased erosion and infrastructure damage potential. © 2024 by the authors.
URI
http://hdl.handle.net/11407/8700
Collections
  • Indexados Scopus [2005]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Effective phosphorus removal using transformed water hyacinth: Performance evaluation in fixed-bed columns and practical applications 

    Ramirez-Muñoz A.; Flórez E.; Ocampo-Perez R.; Acelas N. (Facultad de Ciencias Básicas, 2024)
    This study introduces calcined water hyacinth (CWH), processed at 650◦C, as a novel and environmentally friendly adsorbent for phosphorus (P) removal from wastewater. Building on previous findings that identified CWH as a ...
  • Thumbnail

    Propuesta de integración del modelo para construcción de soluciones y el modelo de negocio Canvas para el desarrollo de sistemas telemáticos 

    Burbano Santacruz, Diego Fernando; Rojas Pineda, Eduardo (Universidad de MedellínFacultad de IngenieríasMedellín, 2017-12-31)
  • Thumbnail

    Simulating current-energy converters: SNL-EFDC model development, verification, and parameter estimation 

    James S.C.; Johnson E.L.; Barco J.; Roberts J.D.
    Increasing interest in power production from ocean, tidal, and river currents has led to significant efforts to maximize energy conversion through optimal design and siting and to minimize effects on the environment. ...
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com