REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dysphagia screening with sEMG, accelerometry and speech: Multimodal machine and deep learning approaches

Thumbnail
Share this
Date
2025
Author
Roldan-Vasco S
Orozco-Duque A
Orozco-Arroyave J.R.

Citación

       
TY - GEN T1 - Dysphagia screening with sEMG, accelerometry and speech: Multimodal machine and deep learning approaches Y1 - 2025 UR - http://hdl.handle.net/11407/8708 PB - Elsevier Ltd AB - Dysphagia is a swallowing disorder that affects food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Clinically accepted dysphagia diagnosis and follow-up methods are invasive, uncomfortable, expensive, and experience-dependent. This paper explores a multimodal non-invasive approach to objectively assess dysphagia with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. The defined acquisition protocol was applied to patients with dysphagia and healthy control subjects. Features were extracted from the three biosignals in different domains with the aim of proposing interpretable biomarkers. Finally, the methodology was evaluated according to the accuracy and area under the receiver operating characteristic curve obtained with different classifiers. According to our results, all signals demonstrated their suitability for dysphagia screening, specially speech and multi-modal scenarios evaluated with machine learning models and also with Gated Multimodal Units. This paper contributes to reducing the knowledge gap about swallowing-related phenomena and incorporates non-invasive and multi-modal methods with high potential to be transferred and implemented in clinical practice. © 2024 Elsevier Ltd ER - @misc{11407_8708, author = {}, title = {Dysphagia screening with sEMG, accelerometry and speech: Multimodal machine and deep learning approaches}, year = {2025}, abstract = {Dysphagia is a swallowing disorder that affects food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Clinically accepted dysphagia diagnosis and follow-up methods are invasive, uncomfortable, expensive, and experience-dependent. This paper explores a multimodal non-invasive approach to objectively assess dysphagia with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. The defined acquisition protocol was applied to patients with dysphagia and healthy control subjects. Features were extracted from the three biosignals in different domains with the aim of proposing interpretable biomarkers. Finally, the methodology was evaluated according to the accuracy and area under the receiver operating characteristic curve obtained with different classifiers. According to our results, all signals demonstrated their suitability for dysphagia screening, specially speech and multi-modal scenarios evaluated with machine learning models and also with Gated Multimodal Units. This paper contributes to reducing the knowledge gap about swallowing-related phenomena and incorporates non-invasive and multi-modal methods with high potential to be transferred and implemented in clinical practice. © 2024 Elsevier Ltd}, url = {http://hdl.handle.net/11407/8708} }RT Generic T1 Dysphagia screening with sEMG, accelerometry and speech: Multimodal machine and deep learning approaches YR 2025 LK http://hdl.handle.net/11407/8708 PB Elsevier Ltd AB Dysphagia is a swallowing disorder that affects food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Clinically accepted dysphagia diagnosis and follow-up methods are invasive, uncomfortable, expensive, and experience-dependent. This paper explores a multimodal non-invasive approach to objectively assess dysphagia with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. The defined acquisition protocol was applied to patients with dysphagia and healthy control subjects. Features were extracted from the three biosignals in different domains with the aim of proposing interpretable biomarkers. Finally, the methodology was evaluated according to the accuracy and area under the receiver operating characteristic curve obtained with different classifiers. According to our results, all signals demonstrated their suitability for dysphagia screening, specially speech and multi-modal scenarios evaluated with machine learning models and also with Gated Multimodal Units. This paper contributes to reducing the knowledge gap about swallowing-related phenomena and incorporates non-invasive and multi-modal methods with high potential to be transferred and implemented in clinical practice. © 2024 Elsevier Ltd OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Dysphagia is a swallowing disorder that affects food, liquid, or saliva transit from the mouth to the stomach. Dysphagia leads to malnutrition, dehydration, and aspiration of the bolus into the respiratory system, which can lead to pneumonia with subsequent death. Clinically accepted dysphagia diagnosis and follow-up methods are invasive, uncomfortable, expensive, and experience-dependent. This paper explores a multimodal non-invasive approach to objectively assess dysphagia with three biosignals: surface electromyography, accelerometry-based cervical auscultation, and speech. The defined acquisition protocol was applied to patients with dysphagia and healthy control subjects. Features were extracted from the three biosignals in different domains with the aim of proposing interpretable biomarkers. Finally, the methodology was evaluated according to the accuracy and area under the receiver operating characteristic curve obtained with different classifiers. According to our results, all signals demonstrated their suitability for dysphagia screening, specially speech and multi-modal scenarios evaluated with machine learning models and also with Gated Multimodal Units. This paper contributes to reducing the knowledge gap about swallowing-related phenomena and incorporates non-invasive and multi-modal methods with high potential to be transferred and implemented in clinical practice. © 2024 Elsevier Ltd
URI
http://hdl.handle.net/11407/8708
Collections
  • Indexados Scopus [2005]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Herramienta multimodal basada en tareas para el aprendizaje del inglés en el grado sexto de educación básica secundaria en el I.E. Jorge Eliecer Gaitán de Florencia, Caquetá 

    Aguilar Cruz, Paola Julie (Maestría en EducaciónFacultad de EducaciónMedellínUniversidad de Medellín, 2018-03-30)
    El presente trabajo de investigación-acción educativa, cuyo objetivo era proponer una herramienta multimodal para el aprendizaje del inglés con el fin de mejorar el aprendizaje de los estudiantes del grupo 6-01 de la I.E. ...
  • Thumbnail

    Hacia una conceptualización de los videojuegos como discursos multimodales electrónicos 

    Pereira Henríquez, Felipe; Alonzo Zúñiga, Teresa (Universidad de MedellínFacultad de ComunicaciónMedellín, 2017-06-30)
    Los videojuegos son prácticas culturales instaladas en nuestras sociedades que requieren de una mirada crítica y especializada; las líneas de investigación que han abordado este fenómeno transitan entre los estudios ...
  • Thumbnail

    Fortalecimiento de la competencia uso comprensivo del conocimiento científico en la media vocacional, a partir de la implementación de una secuencia didáctica multimodal sobre la nomenclatura de ácidos inorgánicos 

    Henao Patiño, John James; Romaña Padilla, Leonard Enrique (Maestría en EducaciónFacultad de Ciencias Sociales y HumanasMedellínUniversidad de Medellín, 2019-06-30)
    En este trabajo se analiza la incidencia de la aplicación de una secuencia didáctica multimodal en la apropiación y comprensión de los estudiantes de grado 10º sobre la clasificación de los ácidos inorgánicos. Este estudio ...
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com