Show simple item record

dc.contributor.authorEscobar-Sierra, M.
dc.contributor.authorGiraldo, E.Y.G.
dc.date.accessioned2024-12-27T20:52:12Z
dc.date.available2024-12-27T20:52:12Z
dc.date.created2024
dc.identifier.issn16465954
dc.identifier.urihttp://hdl.handle.net/11407/8723
dc.descriptionThe vast amount of available data, computational advances, and increasing social demands from customers present enormous challenges for delivery companies. Recognizing this need, we aim to investigate how such companies manage customer claims through X®. Our research, employing a sequential mixed-methods approach, began with a literature review through bibliometric analysis and subsequent interpretation via content analysis, concluding with the triangulation of theoretical findings with empirical evidence obtained from social media. For the final analysis phase, we collected and analyzed user mentions of delivery brands on X®, creating a data corpus-i.e., a sample collected through techniques-essential for our exploratory analysis. In this big data sample, we applied various natural language processing and machine learning algorithms, uncovering how users of these delivery companies tend to compare brands when making complaints. Furthermore, our research highlighted the psychological bias of users, who tend to polarize between love and hate for brands, respond to other user's posts, and engage in significant interactions with likes. Consequently, factors such as brand comparison, polarization between love and hate, and user interaction emerged as the main predictors of claims to these companies, underscoring the practical implications of our findings for the delivery industry. © 2024 (Escobar-Sierra, Guisao Giraldo).
dc.language.isoeng
dc.publisherObercom
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85205490914&doi=10.15847%2fobsOBS18320242382&partnerID=40&md5=e3c1c16a0638605a5cc870a53d107b27
dc.sourceObservatorio
dc.sourceObservatorio
dc.sourceScopus
dc.subjectBig dataeng
dc.subjectDelivery customer claimseng
dc.subjectMachine learning algorithmseng
dc.subjectPolarizationeng
dc.subjectSocial mediaeng
dc.titleMining Delivery Customer Claims in Social Media in Colombia, an Exploratory Analysis Applying Machine Learning Algorithmseng
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programAdministración de Empresas
dc.publisher.programNegocios Internacionales
dc.type.spaArtículo de revista
dc.identifier.doi10.15847/obsOBS18320242382
dc.relation.citationvolume18
dc.relation.citationissue3
dc.relation.citationstartpage54
dc.relation.citationendpage74
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativas
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationEscobar-Sierra, M., School of Economic and Administrative Sciences, University of Medellin, Colombia
dc.affiliationGiraldo, E.Y.G., School of Economic and Administrative Sciences, University of Medellin, Colombia
dc.relation.referencesAlexopoulou, T., Michel, M., Murakami, A., Meurers, D., Task Effects on Linguistic Complexity and Accuracy: A Large-Scale Learner Corpus Analysis Employing Natural Language Processing Techniques (2017) Language Learning, 67 (S1), pp. 180-208. , https://doi.org/10.1111/lang.12232, John Wiley & Sons, Ltd
dc.relation.referencesBabu, M. S. P., Sastry, S. H., Big data and predictive analytics in ERP systems for automating decision making process (2014) Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, pp. 259-262. , https://doi.org/10.1109/ICSESS.2014.6933558
dc.relation.referencesBalar, A., Malviya, N., Prasad, S., Gangurde, A., Forecasting consumer behavior with innovative value proposition for organizations using big data analytics (2013) 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2013, , https://doi.org/10.1109/ICCIC.2013.6724280
dc.relation.referencesBasha, S. M., Rajput, D. S., An innovative topic-based customer complaints sentiment classification system (2019) International Journal of Business Innovation and Research, 20 (3), pp. 375-391. , https://doi.org/10.1504/IJBIR.2019.102718
dc.relation.referencesBilegan, I. C., Crainic, T. G., Wang, Y., Scheduled service network design with revenue management considerations and an intermodal barge transportation illustration (2022) European Journal of Operational Research, 300 (1), pp. 164-177. , https://doi.org/10.1016/j.ejor.2021.07.032
dc.relation.referencesBoyd, D., Crawford, K., Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon (2012) Information Communication and Society, 15 (5), pp. 662-679. , https://doi.org/10.1080/1369118X.2012.678878
dc.relation.referencesBramer, M., Principles of Data Mining (I. Mackie (ed.)). Springer. Bughin, J. (2015). Google searches and twitter mood: nowcasting telecom sales performance (2007), 16 (1-2), pp. 87-105. , https://doi.org/10.1007/s11066-015-9096-5, NETNOMICS: Economic Research and Electronic Networking
dc.relation.referencesChen, D., Zhou, Y., Guan, X., Lin, X., Transaction or Membership? Impact on On-Demand Delivery Service Platforms' Profits, Consumer Surplus, and Labor Welfare (2022) Journal of Systems Science and Systems Engineering, 31 (5), pp. 563-593. , https://doi.org/10.1007/s11518-022-5538-4
dc.relation.referencesChern, C. C., Wei, C. P., Shen, F. Y., Fan, Y. N., A sales forecasting model for consumer products based on the influence of online word-of-mouth (2015) Information Systems and E-Business Management, 13 (3), pp. 445-473. , https://doi.org/10.1007/s10257-014-0265-0
dc.relation.referencesCho, Y. J., Xue, L., Huang, S. R., Yang, Z. P., Construction and application of customer satisfaction model with the service quality of last-mile delivery in rural areas (2021) WSEAS Transactions on Business and Economics, 18, pp. 703-711. , https://doi.org/10.37394/23207.2021.18.69
dc.relation.referencesChong, A. Y. L., Ch'ng, E., Liu, M. J., Li, B., Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews (2017) International Journal of Production Research, 55 (17), pp. 5142-5156. , https://doi.org/10.1080/00207543.2015.1066519
dc.relation.referencesCui, G., Lui, H. K., Guo, X., The effect of online consumer reviews on new product sales (2012) International Journal of Electronic Commerce, 17 (1), pp. 39-58. , https://doi.org/10.2753/JEC1086-4415170102
dc.relation.referencesDowney, A., (2015) Think stats: exploratory data analysis (Second), , O'Reilly
dc.relation.referencesDurieux, V., Gevenois, P. A., Bibliometric indicators: quality measurements of scientific publication (2010) Radiology, 255 (2), pp. 342-351. , https://doi.org/10.1148/radiol.09090626
dc.relation.referencesEscobar-Sierra, M., Lara-Valencia, L. A., Valencia-DeLara, P., 'Step-by-step' method to conduct applied research in organizational engineering and business management (Metodo 'paso a paso' para la investigacion aplicada en el ambito de la ingenieria organizacional y la gestion empresarial) (2021) Culture and Education, 33 (1), pp. 28-77. , https://doi.org/10.1080/11356405.2020.1859735
dc.relation.referencesFlach, P., (2012) Machine Learning: The Art and Science of Algorithms that Make Sense of Data - Peter Flach - Google Libros, , https://books.google.es/books?id=Ofp4h_oXsZ4C&dq=Machine+Learning:+The+Art+and+Science+of+Algorithms+that+Make+Sense+of+Data&lr=&hl=es&source=gbs_navlinks_s, Cambridge university Press
dc.relation.referencesHu, T. L., Sheu, J. B., A fuzzy-based customer classification method for demand-responsive logistical distribution operations (2003) Fuzzy Sets and Systems, 139 (2), pp. 431-450. , https://doi.org/10.1016/S0165-0114(02)00516-X
dc.relation.referencesJin, X., Li, K., Sivakumar, A. I., Scheduling and optimal delivery time quotation for customers with time sensitive demand (2013) International Journal of Production Economics, 145 (1), pp. 349-358. , https://doi.org/10.1016/j.ijpe.2013.05.003
dc.relation.referencesJusto, R., Corcoran, T., Lukin, S. M., Walker, M., Torres, M. I., Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web (2014) Knowledge-Based Systems, 69 (1), pp. 124-133. , https://doi.org/10.1016/j.knosys.2014.05.021
dc.relation.referencesKaye, L. K., Malone, S. A., Wall, H. J., Emojis: Insights, Affordances, and Possibilities for Psychological Science (2017) Trends in Cognitive Sciences, 21 (2), pp. 66-68. , https://doi.org/10.1016/j.tics.2016.10.007, Elsevier Current Trends
dc.relation.referencesLassen, N. B., Madsen, R., Vatrapu, R., Predicting iPhone Sales from iPhone Tweets (2014) Proceedings. IEEE 18th International Enterprise Distributed Object Computing Conference, pp. 81-90. , https://doi.org/10.1109/EDOC.2014.20, 2014 Decem(December)
dc.relation.referencesLi, J., Tao, F., Cheng, Y., Zhao, L., Big Data in product lifecycle management (2015) International Journal of Advanced Manufacturing Technology, 81 (1-4), pp. 667-684. , https://doi.org/10.1007/s00170-015-7151-x
dc.relation.referencesLiu, B., Sentiment analysis and opinion mining (2012) Synthesis Lectures on Human Language Technologies, 5 (1), pp. 1-184. , https://doi.org/10.2200/S00416ED1V01Y201204HLT016
dc.relation.referencesLu, C. J., Chang, C. C., A hybrid sales forecasting scheme by combining independent component analysis with k-means clustering and support vector regression (2014) Scientific World Journal, 2014. , https://doi.org/10.1155/2014/624017
dc.relation.referencesMcAfee, A., Brynjolfsson, E., Big data: The management revolution (2012) Harvard Business Review, 90 (10), p. 4
dc.relation.referencesMingers, J., Combining IS Research Methods: Towards a Pluralist Methodology (2001) Information Systems Research, 12 (3), pp. 240-259. , https://doi.org/10.1287/isre.12.3.240.9709
dc.relation.referencesMoadab, A., Farajzadeh, F., Fatahi Valilai, O., Drone routing problem model for last-mile delivery using the public transportation capacity as moving charging stations (2022) Scientific Reports, 12 (1). , https://doi.org/10.1038/s41598-022-10408-4
dc.relation.referencesMoher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Tugwell, P., Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (2009) Annals of internal medicine, 151 (4), pp. 264-270. , https://doi.org/10.3736/jcim20090918, American College of Physicians
dc.relation.referencesMu, J., Stegmann, K., Mayfield, E., Rose, C., Fischer, F., The ACODEA framework: Developing segmentation and classification schemes for fully automatic analysis of online discussions (2012) International Journal of Computer-Supported Collaborative Learning, 7 (2), pp. 285-305. , https://doi.org/10.1007/s11412-012-9147-y
dc.relation.referencesMyatt, G. J., (2007) Making Sense of Data, A Practical Guide to Exploratory Data Analysis and Data Mining, , John Wiley & Sons, Inc
dc.relation.referencesNajar, D., Mesfar, S., Opinion mining and sentiment analysis for Arabic on-line texts: application on the political domain (2017) International Journal of Speech Technology, 20 (3), pp. 575-585. , https://doi.org/10.1007/s10772-017-9422-4
dc.relation.referencesPancer, E., Chandler, V., Poole, M., Noseworthy, T. J., How Readability Shapes Social Media Engagement (2019) Journal of Consumer Psychology, 29 (2), pp. 262-270. , https://doi.org/10.1002/jcpy.1073
dc.relation.referencesPandey, S., Pandey, S. K., Miller, L., Measuring Innovativeness of Public Organizations: Using Natural Language Processing Techniques in Computer-Aided Textual Analysis (2017) International Public Management Journal, 20 (1), pp. 78-107. , https://doi.org/10.1080/10967494.2016.1143424
dc.relation.referencesPang, B., Lee, L., Opinion mining and sentiment analysis (2008) Foundations and Trends in Information Retrieval, 2 (1-2), pp. 1-135. , https://doi.org/10.1561/1500000011
dc.relation.referencesPurba, K. R., Asirvatham, D., Murugesan, R. K., A Study on the Methods to Identify and Classify Cyberbullying in Social Media (2018) Proceedings - 2018 4th International Conference on Advances in Computing, Communication and Automation, ICACCA 2018, , https://doi.org/10.1109/ICACCAF.2018.8776758, (October 1)
dc.relation.referencesPuts, M., Daas, P., de Waal, T., Finding errors in Big Data (2015) Significance, 12 (3), pp. 26-29. , https://doi.org/10.1111/j.1740-9713.2015.00826.x
dc.relation.referencesSadhu, K., Haghshenas, K., Rouhani, M., Aiello, M., Optimal joint operation of coupled transportation and power distribution urban networks (2022) Energy Informatics, 5 (1), pp. 1-20. , https://doi.org/10.1186/s42162-022-00249-w
dc.relation.referencesSaif, H., Ortega, F. J., Fernandez, M., Cantador, I., (2016) Sentiment Analysis in Social Streams, pp. 119-140. , https://doi.org/10.1007/978-3-319-31413-6_7, Springer, Cham
dc.relation.referencesSchlosser, R. W., Wendt, O., Bhavnani, S., Nail-Chiwetalu, B., Use of information-seeking strategies for developing systematic reviews and engaging in evidence-based practice: The application of traditional and comprehensive Pearl Growing. A review (2006) International Journal of Language and Communication Disorders, 41 (5), pp. 567-582. , https://doi.org/10.1080/13682820600742190
dc.relation.referencesSchuster, S., Hawelka, S., Hutzler, F., Kronbichler, M., Richlan, F., Words in Context: The Effects of Length, Frequency, and Predictability on Brain Responses during Natural Reading (2016) Cerebral Cortex, 26 (10), pp. 3889-3904. , https://doi.org/10.1093/cercor/bhw184
dc.relation.referencesSee-To, E. W. K., Ngai, E. W. T., Customer reviews for demand distribution and sales nowcasting: a big data approach (2018) Annals of Operations Research, 270 (1-2), pp. 415-431. , https://doi.org/10.1007/s10479-016-2296-z
dc.relation.referencesSmirnov, A., Pashkin, M., Chilov, N., Personalized customer service management for networked enterprises (2016) 2005 IEEE International Technology Management Conference, ICE 2005, , https://doi.org/10.1109/ITMC.2005.7461283, (April 27)
dc.relation.referencesSnijders, C., Matzat, U., Reips, U.-D., "Big Data": Big Gaps of Knowledge in the Field of Internet Science (2013) International Journal of Internet Science, 7 (1), pp. 1-5
dc.relation.referencesSullivan, C., Forrester, M., (2019) Doing Qualitative Research in Psychology: A Practical Guide (Second), , Sage Publications Ltd
dc.relation.referencesSusskind, A. M., A Content Analysis of Consumer Complaints, Remedies, and Repatronage Intentions Regarding Dissatisfying Service Experiences (2005) Journal of Hospitality and Tourism Research, 29 (2), pp. 150-169. , https://doi.org/10.1177/1096348004273426
dc.relation.referencesSyahputra, R. H., Komarudin, K., Destyanto, A. R., Optimization model of ready-mix concrete delivery route and schedule: A case in Indonesia rmc industry (2018) Proceedings - 3rd International Conference on Computational Intelligence and Applications, ICCIA 2018, pp. 21-25. , https://doi.org/10.1109/ICCIA.2018.00012
dc.relation.referencesSydneyta, V., Komarudin, Optimization of distribution route and schedule with vehicle routing problem with time windows (VRPTW) (2017) ACM International Conference Proceeding Series, pp. 127-132. , https://doi.org/10.1145/3178264.3178287
dc.relation.referencesTan, K. H., Zhan, Y. Z., Ji, G., Ye, F., Chang, C., Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph (2015) International Journal of Production Economics, 165, pp. 223-233. , https://doi.org/10.1016/j.ijpe.2014.12.034
dc.relation.referencesvan Eck, N. J., Waltman, L., Bibliometric mapping of the computational intelligence field (2007) International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 15 (5), pp. 625-645. , https://doi.org/10.1142/S0218488507004911
dc.relation.referencesvan Eck, N. J., Waltman, L., Software survey: VOSviewer, a computer program for bibliometric mapping (2010) Scientometrics, 84 (2), pp. 523-538. , https://doi.org/10.1007/s11192-009-0146-3
dc.relation.referencesVasić, N., Kilibarda, M., Andrejić, M., Jović, S., Satisfaction is a function of users of logistics services in e-commerce (2021) Technology Analysis and Strategic Management, 33 (7), pp. 813-828. , https://doi.org/10.1080/09537325.2020.1849610
dc.relation.referencesWaller, M. A., Fawcett, S. E., Click here for a data scientist: Big data, predictive analytics, and theory development in the era of a maker movement supply chain (2013) Journal of Business Logistics, 34 (4), pp. 249-252. , https://doi.org/10.1111/jbl.12024
dc.relation.referencesYang, W., Guo, H., Su, J., Scheduling Optimization of Vehicles Considering Customer Rank and Delivery Time Demand (2020) Communications in Computer and Information Science, 1160 CCIS, pp. 310-325. , https://doi.org/10.1007/978-981-15-3415-7_26
dc.relation.referencesZhai, C., Exploiting Context to Identify Lexical Atoms - A Statistical View of Linguistic Context (1997) Proc. of International & Interdisciplinary Conference on Modifying and Using Context (CONTEXT-97), pp. 119-129. , https://doi.org/10.48550/arxiv.cmp-lg/9701001
dc.relation.referencesZhou, Z., Liu, Z., Su, H., Zhang, L., Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks (2023) Energy, 263, p. 126073. , https://doi.org/10.1016/j.energy.2022.126073
dc.relation.referencesZulkifli, N. S. A., Lee, A. W. K., Sentiment Analysis in Social Media Based on English Language Multilingual Processing Using Three Different Analysis Techniques (2019) Communications in Computer and Information Science, 1100, pp. 375-385. , https://doi.org/10.1007/978-981-15-0399-3_30
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record