| dc.contributor.author | Marín-Uribe C.R. | |
| dc.contributor.author | Soto-Guzmán J. | |
| dc.contributor.author | Mario R.M.A. | |
| dc.date.accessioned | 2024-12-27T20:52:18Z | |
| dc.date.available | 2024-12-27T20:52:18Z | |
| dc.date.created | 2024 | |
| dc.identifier.issn | 7162952 | |
| dc.identifier.uri | http://hdl.handle.net/11407/8744 | |
| dc.description | The feasibility of using the Semicircular Bending (SCB) test to control the quality of concrete for application in pavements was investigated. Two concrete mixtures incorporating high-strength cement with specified compressive strengths of 30 MPa and 40 MPa were manufactured. The results of the SCB test were correlated with those of the flexural strength of standardized beams and the compressive strength of cylinders. A statistical analysis of the goodness of fit of all the empirical models obtained was conducted to study the degree of association between the variables. Power models were the most appropriate to relate the mechanical properties studied, with Pearson's correlation coefficients higher than 0.93. These equations can feed the database of levels 1 and 2 of the Mechanistic-Empirical (ME) design method for concrete pavements. Models with unique values that allow quick calculations with good precision were also found. The results show that the SCB test is a promising option when estimating the flexural strength of concrete for use in pavement, as well as carrying out its control and quality assurance. © 2024 Potificia Universidad Catolica de Chile. All rights reserved. | |
| dc.language.iso | eng | |
| dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200246878&doi=10.7764%2fRIC.00108.21&partnerID=40&md5=65008734788afb6b1be1dbd8f21eeb57 | |
| dc.source | Revista Ingenieria de Construccion | |
| dc.source | Rev. Ing. Constr. | |
| dc.source | Scopus | |
| dc.subject | Compressive strength | eng |
| dc.subject | Concrete | eng |
| dc.subject | Flexural strength | eng |
| dc.subject | Modulus of rupture | eng |
| dc.subject | SCB | eng |
| dc.subject | Semi-circular bending test | eng |
| dc.title | Experimental Study of the Semicircular Bending Test for Estimating the Flexural Strength of Concrete Mixtures for Pavements; [Estudio Experimental de la Prueba de Flexión Semicircular para Estimar la Resistencia a la Flexión de Mezclas de Concreto para Pavimentos] | eng |
| dc.type | Article | |
| dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
| dc.publisher.program | Ingeniería Civil | |
| dc.type.spa | Artículo de revista | |
| dc.identifier.doi | 10.7764/RIC.00108.21 | |
| dc.relation.citationvolume | 39 | |
| dc.relation.citationissue | 2 | |
| dc.relation.citationstartpage | 127 | |
| dc.relation.citationendpage | 139 | |
| dc.publisher.faculty | Facultad de Ingenierías | |
| dc.affiliation | Marín-Uribe C.R., Facultad de Ingeniería, Universidad Surcolombiana, Neiva, Colombia | |
| dc.affiliation | Soto-Guzmán J., Escuela de Construción Civil, Pontificia Universidad Católica de Chile, Santiago, Chile | |
| dc.affiliation | Mario R.M.A., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia | |
| dc.relation.references | Pavement Design Guide A Manual of Practice, American Association of State Highway and Transportation Officials, (2008) | |
| dc.relation.references | Building Code Requirements for Structural Concrete (ACI 318-19), (2019) | |
| dc.relation.references | Ahmed M., El Hadi K. M., Hasan M. A., Mallick J., Ahmed A., Evaluating the co-relationship between concrete flexural tensile strength and compressive strength, International Journal of Structural Engineering, 5, 2, pp. 115-131, (2014) | |
| dc.relation.references | Alhussainy F., Hasan H. A., Neaz Sheikh M., Hadi M. N. S., A new method for direct tensile testing of concrete, Journal of Testing and Evaluation, 47, 2, pp. 704-718, (2019) | |
| dc.relation.references | Ardiansyah A., Mardhia M. M., Handayaningsih S., Analogy-based model for software project effort estimation, International Journal of Advances in Intelligent Informatics, 4, 3, pp. 251-260, (2018) | |
| dc.relation.references | Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-point Loading), (2016) | |
| dc.relation.references | Standard Test Method for Flexural Strength of Concrete, (2016) | |
| dc.relation.references | Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, (2011) | |
| dc.relation.references | Ayanlere S. A., Ajamu S. O., Odeyemi S. O., Ajayi O. E., Kareem M. A., Effects of water-cement ratio on bond strength of concrete, Materials Today: Proceedings, 86, pp. 134-139, (2023) | |
| dc.relation.references | Bhanja S., Sengupta B., Influence of silica fume on the tensile strength of concrete, Cement and Concrete Research, 35, 4, pp. 743-747, (2005) | |
| dc.relation.references | Chen X., Solaimanian M., Effect of Test Temperature and Displacement Rate on Semicircular Bend Test, Journal of Materials in Civil Engineering, 31, 7, pp. 1-9, (2019) | |
| dc.relation.references | Du H., Ni F., Ma X., Crack Resistance Evaluation for In-Service Asphalt Pavements by Using SCB Tests of Layer-Core Samples, Journal of Materials in Civil Engineering, 33, 1, pp. 1-11, (2021) | |
| dc.relation.references | Huang D., Li B., Ma W. Z., Cen D. F., Song Y. X., Effects of bedding planes on fracture behavior of sandstone under semi-circular bending test, Theoretical and Applied Fracture Mechanics, 108, pp. 1-16, (2020) | |
| dc.relation.references | Manual de diseño y construcción de pavimentos de hormigón, (2014) | |
| dc.relation.references | (2009) | |
| dc.relation.references | (2009) | |
| dc.relation.references | NCh 1038. Concrete - Test for flexural tensile strength, (2009) | |
| dc.relation.references | NCh 1498. Concrete and mortar - Mixing water - Classification and requirements, (2012) | |
| dc.relation.references | NCh 170 Of.2016 - Hormigón - Requisitos Generales, (2016) | |
| dc.relation.references | Jahanbakhsh H., Hosseini P., Moghadas Nejad F., Habibi M., Intermediate temperature fracture resistance evaluation of cement emulsified asphalt mortar, Construction and Building Materials, 197, pp. 1-11, (2019) | |
| dc.relation.references | Kataoka M., Obara Y., Kuruppu M., Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure, Rock Mechanics and Rock Engineering, 48, 4, pp. 1353-1367, (2015) | |
| dc.relation.references | Kuruppu M. D., Obara Y., Ayatollahi M. R., Chong K. P., Funatsu T., ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen, Rock Mechanics and Rock Engineering, 47, 1, pp. 267-274, (2014) | |
| dc.relation.references | Lim I. L., Johnston I. W., Choi S. K., Boland J. N., Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1-mode I, International Journal of Rock Mechanics and Mining Sciences And, 31, 3, pp. 185-197, (1994) | |
| dc.relation.references | Lu D. X., Bui H. H., Saleh M., Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test, Engineering Fracture Mechanics, 242, pp. 1-16, (2021) | |
| dc.relation.references | Lu D. X., Saleh M., Nguyen N. H. T., Evaluation of Fracture and Fatigue Cracking Characterization Ability of Nonstandardized Semicircular-Bending Test for Asphalt Concrete, Journal of Materials in Civil Engineering, 32, 8, pp. 1-11, (2020) | |
| dc.relation.references | Molenaar A. A. A., Scarpas A., Liu X., Erkens S. M. J. G., Semi-circular bending test | |
| dc.relation.references | simple but useful?, Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 71, pp. 794-815, (2002) | |
| dc.relation.references | CIP 16- Flexural Strength Concrete, The Concrete in Practice Series (CIP), 102, 1, (2000) | |
| dc.relation.references | Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Part 2. Design Inputs, (2004) | |
| dc.relation.references | Nsengiyumva G., Kim Y. R., Effect of Testing Configuration in Semi-Circular Bending Fracture of Asphalt Mixtures: Experiments and Statistical Analyses, Transportation Research Record, 2673, 5, pp. 320-328, (2019) | |
| dc.relation.references | Concrete structures standard. Part 1:The design of concrete structures, (2006) | |
| dc.relation.references | Rashidi Moghaddam M., Ayatollahi M. R., Berto F., Rock Fracture Toughness Under Mode II Loading: A Theoretical Model Based on Local Strain Energy Density, Rock Mechanics and Rock Engineering, 51, 1, pp. 243-253, (2018) | |
| dc.relation.references | Resan S. F., Chassib S. M., Zemam S. K., Madhi M. J., New approach of concrete tensile strength test, Case Studies in Construction Materials, 12, pp. 1-13, (2020) | |
| dc.relation.references | Sabih G., Tarefder R. A., Impact of variability of mechanical and thermal properties of concrete on predicted performance of jointed plain concrete pavements, International Journal of Pavement Research and Technology, 9, 6, pp. 436-444, (2016) | |
| dc.relation.references | Sabih G., Tarefder R. A., Characterizing strength and thermal properties of concrete for implementation of pavement mechanistic-empirical design in New Mexico, Transportation Geotechnics, 15, pp. 20-28, (2018) | |
| dc.relation.references | Saha G., Biligiri K. P., Fracture damage evaluation of asphalt mixtures using Semi-Circular Bending test based on fracture energy approach, Engineering Fracture Mechanics, 142, pp. 154-169, (2015) | |
| dc.relation.references | Sarfarazi V., Ghazvinian A., Schubert W., Nejati H. R., Hadei R., A new approach for measurement of tensile strength of concrete, Periodica Polytechnica Civil Engineering, 60, 2, pp. 199-203, (2016) | |
| dc.relation.references | Schwartz C. W., Li R., Kim S. H., Ceylan H., Gopalakrishnan K., Sensitivity Evaluation of MEPDG Performance Prediction, Final Report - Project, pp. 1-47, (2013) | |
| dc.relation.references | Tanesi J., Ardani A., Leavitt J., Reducing the specimen size of the AASHTO T 97 concrete flexural strength test for safety and ease of handling, Transportation Research Record, 2342, pp. 99-105, (2013) | |
| dc.relation.references | Wang X., Saifullah H. A., Nishikawa H., Nakarai K., Effect of water–cement ratio, aggregate type, and curing temperature on the fracture energy of concrete, Construction and Building Materials, 259, (2020) | |
| dc.relation.references | Wang X., Zhang J., Li K., Ding Y., Geng L., Cracking Analysis of Asphalt Mixture Using Semi-circle Bending Method, Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45, 1, pp. 269-279, (2021) | |
| dc.relation.references | Wang Y., Rock Dynamic Fracture Characteristics Based on NSCB Impact Method, Shock and Vibration, 2018, pp. 1-13, (2018) | |
| dc.relation.references | Xiongzhou Y., Yuze T., Qinglin L., Song L., Qianwen D., Aliha M. R. M., KIc and KIIc measurement for hot mix asphalt mixtures at low temperature: Experimental and theoretical study using the semicircular bend specimen with different thicknesses, Fatigue and Fracture of Engineering Materials and Structures, 44, 3, pp. 832-846, (2021) | |
| dc.relation.references | Zhang J., Little D. N., Grajales J., You T., Kim Y. R., Use of Semicircular Bending Test and Cohesive Zone Modeling to Evaluate Fracture Resistance of Stabilized Soils, Transportation Research Record, 2657, 1, pp. 67-77, (2017) | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
| dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
| dc.identifier.instname | instname:Universidad de Medellín | |