dc.contributor.author | Ospina-Montoya V | |
dc.contributor.author | Cardozo V | |
dc.contributor.author | Porras J | |
dc.contributor.author | Acelas N | |
dc.contributor.author | Forgionny A. | |
dc.date.accessioned | 2024-12-27T20:52:22Z | |
dc.date.available | 2024-12-27T20:52:22Z | |
dc.date.created | 2024 | |
dc.identifier.issn | 26166518 | |
dc.identifier.uri | http://hdl.handle.net/11407/8759 | |
dc.description | The contamination of wastewater with pharmaceutical compounds represents a growing environmental challenge due to the inefficiency of conventional treatment systems in removing these emerging contaminants. The coffee husk (CH) is a promising bioadsorbent due to its abundant availability as a byproduct of coffee production. This study focuses on using untreated CH as an adsorbent for removing acetaminophen (ACE) and ciprofloxacin (CIP) while exploring the impact of pyrolysis temperature on the adsorption efficiency of these pharmaceutical compounds. The results reveal an excellent CH performance in removing CIP, achieving 64% removal with a maximum adsorption capacity of 37.00 mg/g. Increasing the pyrolysis temperature during the heat treatment of coffee husks significantly affects the adsorption of CIP. This behavior is primarily due to the reduction in functional groups, which are essential for facilitating the adsorption of CIP onto the resulting biochar. Thermodynamic parameters (ΔH° . 0 and ΔG° . 0) indicate that CIP adsorption on CH is an endothermic and not spontaneous process. The removal efficiency of CIP on CH for synthetic wastewater and urine matrices showed that CH can effectively remove CIP from wastewater. Finally, the reuse of CH as a bioadsorbent highlights its potential to contribute to water quality improvement and environmental preservation. © 2024 The Authors. | |
dc.language.iso | eng | |
dc.publisher | IWA Publishing | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195654015&doi=10.2166%2fh2oj.2024.102&partnerID=40&md5=fc0e735036b8f82a9364d6b5adab87f7 | |
dc.source | H2Open Journal | |
dc.source | H2Open J. | |
dc.source | Scopus | |
dc.subject | Adsorption | eng |
dc.subject | Bioadsorbents | eng |
dc.subject | Ciprofloxacin | eng |
dc.subject | Coffee husk | eng |
dc.subject | Complex matrices | eng |
dc.subject | Reuse | eng |
dc.title | Valorization of coffee husks for the sustainable removal of pharmaceuticals from aqueous solutions | eng |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo de revista | |
dc.identifier.doi | 10.2166/h2oj.2024.102 | |
dc.relation.citationvolume | 7 | |
dc.relation.citationissue | 3 | |
dc.relation.citationstartpage | 303 | |
dc.relation.citationendpage | 317 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Ospina-Montoya, V., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Cardozo, V., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Porras, J., Grupo de Investigaciones Biomédicas UniRemington, Corporación Universitaria Remington, Calle 51 No. 51-27, Medellín, 050010, Colombia | |
dc.affiliation | Acelas, N., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Forgionny, A., Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia | |
dc.relation.references | Acelas, N., Lopera, S. M., Porras, J., Torres-Palma, R. A., Evaluating the removal of the antibiotic cephalexin from aqueous solutions using an adsorbent obtained from palm oil fiber (2021) Molecules, 26 (11) | |
dc.relation.references | Adaobi, C., Oba, S. N., Aniagor, C. O., George, A., Ighalo, J. O., Adsorption of ciprofloxacin from water: A comprehensive review (2021) Journal of Industrial and Engineering Chemistry, 93, pp. 57-77 | |
dc.relation.references | Aguilar-Aguilar, A., de León-Martínez, L. D., Forgionny, A., Acelas Soto, N. Y., Mendoza, S. R., Zárate-Guzmán, A. I., A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater (2023) Science of the Total Environment, 905 | |
dc.relation.references | Ahmad, F. A., The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water (2023) Heliyon, 9 (6), p. e16449 | |
dc.relation.references | Ajala, O. A., Akinnawo, S. O., Bamisaye, A., Adedipe, D. T., Adesina, M. O., Okon-Akan, O. A., Adebusuyi, T. A., Bello, O. S., Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents (2023) RSC Advances, 13 (7), pp. 4678-4712 | |
dc.relation.references | Aus der Beek, T., Weber, F.A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A., Pharmaceuticals in the environment—Global occurrences and perspectives (2016) Environmental Toxicology and Chemistry, 35 (4), pp. 823-835 | |
dc.relation.references | Bajpai, S. K., Bajpai, M., Rai, N., Sorptive removal of ciprofoxacin hydrochloride from simulated wastewater using sawdust: Kinetic study and effect of pH (2012) Water SA, 38 (5), pp. 673-682 | |
dc.relation.references | Bhattacharyya, P., Parmar, P. R., Basak, S., Dubey, K. K., Sutradhar, S., Bandyopadhyay, D., Chakrabarti, S., Metal organic framework–derived recyclable magnetic coral Co@co3o4/C for adsorptive removal of antibiotics from wastewater (2023) Environmental Science and Pollution Research, 30 (17), pp. 50520-50536 | |
dc.relation.references | Botero-coy, A. M., Martínez-pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-marín, L. P., An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater (2018) Science of the Total Environment, 642, pp. 842-853 | |
dc.relation.references | Boxall, A. B. A., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., Innes, E., Van Der Kraak, G., Pharmaceuticals and personal care products in the environment: What are the big questions? (2012) Environ Health Perspect, 120 (9), pp. 1221-1229 | |
dc.relation.references | (2017) Turning coffee waste into a valuable asset in Colombia, , https://www.common-fund.org/sites/default/files/Publications/Newsletters/Newsletter_April_2017.pdf, Available in | |
dc.relation.references | Czekała, W., Łukomska, A., Pulka, J., Bojarski, W., Pochwatka, P., Kowalczyk-Jusḱo, A., Oniszczuk, A., Dach, J., Waste-to-energy: Biogas potential of waste from coffee production and consumption (2023) Energy, 276 | |
dc.relation.references | dos Santos, E. C., Gates, W. P., Michels, L., Juranyi, F., Mikkelsen, A., da Silva, G. J., Fossum, J. O., Bordallo, H. N., The pH influence on the intercalation of the bioactive agent ciprofloxacin in fluorohectorite (2018) Applied Clay Science, 166, pp. 288-298 | |
dc.relation.references | Dou, S., Ke, X. X., Shao, Z. D., Bin Zhong, L., Zhao, Q. B., Zheng, Y. M., Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin (2022) Chemosphere, 287 (P1), p. 131962 | |
dc.relation.references | Echeverria, M. C., Nuti, M., Valorisation of the residues of coffee agro-industry: Perspectives and limitations (2017) The Open Waste Management Journal, 10 (1), pp. 13-22 | |
dc.relation.references | Edet, U. A., Ifelebuegu, A. O., Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste (2020) Processes, 8 (6) | |
dc.relation.references | Forgionny, A., Acelas, N. Y., Ocampo-Pérez, R., Padilla-Ortega, E., Pérez, S., Flórez, E., Mechanism adsorption analysis during the removal of Cd2 þ and Cu2 þ onto cedar sawdust via experiment coupled with theoretical calculation: Mono- and multicomponent systems (2022) Environmental Nanotechnology, Monitoring and Management, 18 | |
dc.relation.references | Freitas, L. C., Barbosa, J. R., da Costa, A. L. C., Bezerra, F. W. F., Pinto, R. H. H., de Carvalho Junior, R. N., From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? (2021) Resources, Conservation and Recycling, 169 | |
dc.relation.references | Freundlich, H. M. F., Über die adsorption in losungen (Adsorption in solution) (1907) Zeitschrift für Physikalische Chemie, 57, pp. 385-490 | |
dc.relation.references | Garcia-Ivars, J., Martella, L., Massella, M., Carbonell-Alcaina, C., Alcaina-Miranda, M. I., Iborra-Clar, M. I., Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants (2017) Water Research, 125, pp. 360-373 | |
dc.relation.references | Gracia-Lor, E., Sancho, J. V., Serrano, R., Hernández, F., Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia (2012) Chemosphere, 87 (5), pp. 453-462 | |
dc.relation.references | Gros, M., Petrović, M., Ginebreda, A., Barceló, D., Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes (2010) Environment International, 36 (1), pp. 15-26 | |
dc.relation.references | Hamadeen, H. M., Elkhatib, E. A., New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms (2022) Environmental Research, 210, p. 112929 | |
dc.relation.references | 2021 Crop year production by country, , https://www.ico.org/prices/poproduction.pdf | |
dc.relation.references | Jaramillo, L. Y., Vásquez-Rendón, M., Upegui, S., Posada, J. C., Romero-Sáez, M., Polyethylene-coffee husk ecocomposites for production of value-added consumer products (2021) Sustainable Environment Research, 31 (1) | |
dc.relation.references | Khavari Kashani, M. R., Kiani, R., Hassani, A., Kadier, A., Madihi-Bidgoli, S., Lin, K.Y.A., Ghanbari, F., Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: A new hybrid process (2022) Separation and Purification Technology, 292 | |
dc.relation.references | Khokhar, T. S., Memon, F. N., Memon, A. A., Durmaz, F., Memon, S., Panhwar, Q. K., Muneer, S., Removal of ciprofloxacin from aqueous solution using wheat bran as adsorbent (2019) Separation Science and Technology (Philadelphia), 54 (8), pp. 1278-1288 | |
dc.relation.references | Kümmerer, K., The presence of pharmaceuticals in the environment due to human use – Present knowledge and future challenges (2009) Journal of Environmental Management, 90 (8), pp. 2354-2366 | |
dc.relation.references | Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) Journal of the American Chemical Society, 40 (9), pp. 1361-1403 | |
dc.relation.references | Li, Z., Hong, H., Liao, L., Ackley, C. J., Schulz, L. A., MacDonald, R. A., Mihelich, A. L., Emard, S. M., A mechanistic study of ciprofloxacin removal by kaolinite (2011) Colloids and Surfaces B: Biointerfaces, 88 (1), pp. 339-344 | |
dc.relation.references | Liang, S., Han, Y., Wei, L., McDonald, A. G., Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes (2015) Biomass Conversion and Biorefinery, 5 (3), pp. 237-246 | |
dc.relation.references | Lima, É. C., Adebayo, M. A., Machado, F. M., Kinetic and equilibrium models of adsorption (2015) Carbon Nanostructures, pp. 33-69. , 9783319188744 (Bergmann, C. & Machado, F., eds). Springer International Publishing, Cham | |
dc.relation.references | Liu, Y., Liu, Y. J., Biosorption isotherms, kinetics and thermodynamics (2008) Separation and Purification Technology, 61 (3), pp. 229-242 | |
dc.relation.references | Liu, X., Shen, F., Qi, X., Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw (2019) Science of the Total Environment, 666, pp. 694-702 | |
dc.relation.references | McLain, N. K., Gomez, M. Y., Gachomo, E. W., Acetaminophen levels found in recycled wastewater alter soil microbial community structure and functional diversity (2023) Microbial Ecology, 85 (4), pp. 1448-1462 | |
dc.relation.references | Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A., Vukelic, N., Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater (2019) Journal of Industrial and Engineering Chemistry, 75, pp. 246-252 | |
dc.relation.references | Mitrogiannis, D., Psychoyou, M., Baziotis, I., Inglezakis, V.J., Koukouzas, N., Tsoukalas, N., Palles, D., Markou, G., Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite (2017) Chemical Engineering Journal, 320, pp. 510-522 | |
dc.relation.references | Nazari, G., Abolghasemi, H., Esmaieli, M., Batch adsorption of cephalexin antibiotic from aqueous solution by walnut shell-based activated carbon (2016) Journal of the Taiwan Institute of Chemical Engineers, 58, pp. 357-365 | |
dc.relation.references | Nguyen, T. B., Truong, Q. M., Chen, C. W., Chen, W. H., Di Dong, C., Pyrolysis of marine algae for biochar production for adsorption of ciprofloxacin from aqueous solutions (2022) Bioresource Technology, 351, p. 127043 | |
dc.relation.references | Oliveira, L. S., Franca, A. S., (2015) Chapter 31—An overview of the potential uses for coffee husks, pp. 283-291. , https://doi.org/10.1016/B978-0-12-409517-5.00031-0, R. B. T.-C. in H. & Preedy, D. P., eds). Academic Press, San Diego | |
dc.relation.references | Oosterkamp, W. J., (2014) Use of Volatile Solids From Biomass for Energy Production, , Elsevier | |
dc.relation.references | Paredes-Laverde, M., Silva-Agredo, J., Torres-Palma, R. A., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) Journal of Environmental Management, 213, pp. 98-108 | |
dc.relation.references | Peñafiel, M. E., Vanegas, E., Bermejo, D., Matesanz, J. M., Ormad, M. P., Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution (2019) Hyperfine Interactions, 240 (1) | |
dc.relation.references | Petrovic, B., Gorbounov, M., Masoudi Soltani, S., Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents (2022) Carbon Capture Science and Technology, 3, p. 100045 | |
dc.relation.references | Ramirez, A., Pérez, S., Flórez, E., Acelas, N., Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer (2021) Journal of Environmental Chemical Engineering, 9 (1) | |
dc.relation.references | Salem, A. R., El-Maghrabi, H. H., Preparation and characterization of modified anion exchange resin for uranium adsorption: Estimation of nonlinear optimum isotherm, kinetic model parameters, error function analysis and thermodynamic studies (2023) Journal of Dispersion Science and Technology, 44 (3), pp. 551-565 | |
dc.relation.references | Sun, Y., Yue, Q., Gao, B., Gao, Y., Xu, X., Wang, Y., Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study (2014) Journal of the Taiwan Institute of Chemical Engineers, 45, pp. 681-688 | |
dc.relation.references | Thanh, D., Nguyen, H., Juang, R., Duy, N., Nguyen, V. P., Chao, H., Adsorption process and mechanism of acetaminophen onto commercial activated carbon (2020) Journal of Environmental Chemical Engineering, 8 (6), p. 104408 | |
dc.relation.references | Tran, H. N., Tomul, F., Thi Hoang Ha, N., Nguyen, D. T., Lima, E. C., Le, G. T., Chang, C. T., Woo, S. H., Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism (2020) Journal of Hazardous Materials, 394, p. 122255 | |
dc.relation.references | Treybal, R. E., (1981) Mass-Transfer Operations (2rd edn), , Mc Graw Hill International Book Company, Singapore | |
dc.relation.references | Valdés, L., Pérez, I., De Ménorval, L. C., Altshuler, E., Fossum, J. O., Rivera, A., A simple way for targeted delivery of an antibiotic: In vitro evaluation of a nanoclay-based composite (2017) PLoS One, 12 (11) | |
dc.relation.references | Wu, S., Li, Y., Zhao, X., Du, Q., Wang, Z., Xia, Y., Xia, L., Biosorption behavior of ciprofloxacin onto Enteromorpha prolifera: Isotherm and kinetic studies (2015) International Journal of Phytoremediation, 17 (10), pp. 957-961 | |
dc.relation.references | Yilimulati, M., Wang, L., Ma, X., Yang, C., Habibul, N., Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: Kinetics, thermochemistry and toxicity (2021) Science of the Total Environment, 750, p. 142370 | |
dc.relation.references | Yoo, S. H., Lee, S. C., Jang, H. Y., Kim, S. B., Characterization of ibuprofen removal by calcined spherical hydrochar through adsorption experiments, molecular modeling, and artificial neural network predictions (2023) Chemosphere, 311 | |
dc.relation.references | Zide, D., Fatoki, O., Oputu, O., Opeolu, B., Nelana, S., Olatunji, O., Zeolite ‘adsorption’ capacities in aqueous acidic media | |
dc.relation.references | The role of acid choice and quantification method on ciprofloxacin removal (2018) Microporous and Mesoporous Materials, 255, pp. 226-241 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |