Show simple item record

dc.contributor.authorCaro-Lopera F.J.; Díaz-García J.A.
dc.date.accessioned2025-04-28T22:09:10Z
dc.date.available2025-04-28T22:09:10Z
dc.date.created2024
dc.identifier.issn10665307
dc.identifier.urihttp://hdl.handle.net/11407/8802
dc.descriptionAbstract: In this paper a new approach is derived in the context of shape analysis. The so called polynomial Eulerian shape theory solves an open problem proposed in [27] about the construction of certain shape density involving Euler hypergeometric functions of matrix arguments. The associated distribution is obtained by a connection between the required shape invariants and a known result on canonical correlations published in 1963. As usual in matrix variate statistical shape theory, the densities are expressed in terms of infinite series of zonal polynomials. However, if we consider certain parametric subspace for the parity of the number of landmarks, the computational problem can be solved analytically by deriving the Eulerian matrix relation of two matrix arguments. Under that restriction, the analysis of classical landmark data is based on polynomial distribution with small degree. Finally, a methodology to compare Eulerian shape and landmark discrimination under equivalent classes is proposed and applied in machine vision. © Allerton Press, Inc. 2024.
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85217388182&doi=10.3103%2fS1066530724700194&partnerID=40&md5=9cfdf83aa4b8839ec0433203acae9460
dc.sourceMathematical Methods of Statistics
dc.sourceMath. Methods Stat.
dc.sourceScopus
dc.subjectCorrelation structure
dc.subjectEuler matrix relation
dc.subjectPolynomial distributions
dc.subjectShape theory
dc.subjectZonal polynomials
dc.subjectCorrelation structure
dc.subjectEuler matrix relation
dc.subjectPolynomial distributions
dc.subjectShape theory
dc.subjectZonal polynomials
dc.titlePolynomial Eulerian Shape Distributions
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo revisado por pares
dc.identifier.doi10.3103/S1066530724700194
dc.relation.citationvolume33
dc.relation.citationissue4
dc.relation.citationstartpage373
dc.relation.citationendpage391
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationCaro-Lopera F.J., University of Medellin, Faculty of Basic Sciences, Medellín, Colombia
dc.affiliationDíaz-García J.A., Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Chihuahua, Mexico
dc.relation.referencesArias E., Caro-Lopera F.J., Florez E., Perez-Torres J.F., ‘‘Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters:, and as study cases,’’, Journal of Physics: Conf. Series, (2019)
dc.relation.referencesCaro-Lopera F.J., Diaz-Garcia J.A., Gonzalez-Farias G., Inference in affine shape theory under elliptical models, ’’ J Korean Statist Soc, 43, pp. 67-77, (2014)
dc.relation.referencesCaro-Lopera F.J., Diaz-Garcia J.A., Gonzalez-Farias G., ‘A formula for Jack polynomials of the second order, Appl Math, 34, pp. 113-119, (2007)
dc.relation.referencesCaro-Lopera F.J., Diaz-Garcia J.A., Gonzalez-Farias G., ‘‘Inference in statistical shape theory: Elliptical configuration densities,’’, J Statist Res, 43, 1, pp. 1-19, (2009)
dc.relation.referencesCaro-Lopera F.J., Diaz-Garcia J.A., Gonzalez-Farias G., Noncentral elliptical configuration density, ’’ J Multivariate Anal, 101, pp. 32-43, (2010)
dc.relation.referencesCaro-Lopera F.J., Gonzalez-Farias G., Balakrishnan N., Determinants, permanents and some applications to statistical shape theory, ’’ J Multivariate Anal, 114, pp. 29-39, (2013)
dc.relation.referencesCaro-Lopera F.J., Gonzalez-Farias G., Balakrishnan N., ‘‘On Generalized Wishart Distributions - I: Likelihood Ratio Test for Homogeneity of Covariance Matrices,’’, Sankhyā A, 76A, 2, pp. 179-194, (2014)
dc.relation.referencesCaro-Lopera F.J., Gonzalez-Farias G., Balakrishnan N., ‘‘On generalized Wishart distribution - II: Spherecity test,’’, Sankhyā A, 76A, 2, pp. 195-218, (2014)
dc.relation.referencesCaro-Lopera F.J., The impossibility of a recurrence construction of the invariant polynomials by using the Laplace-Beltrami operator, Far East Journal of Mathematical Sciences, 100, pp. 1265-1288, (2016)
dc.relation.referencesCaro-Lopera F.J., Families of computable matrix-variate polynomial distributions and applications, Far East Journal of Mathematical Sciences, 108, pp. 285-325, (2018)
dc.relation.referencesConstantine A.C., Noncentral distribution problems in multivariate analysis, Ann Math Statist, 34, pp. 1270-1285, (1963)
dc.relation.referencesDavis A.W., Invariant polynomials with two matrix arguments extending the zonal polynomials: Applications to multivariate distribution theory, Ann. Inst. Stat. Math, 31, pp. 465-485, (1979)
dc.relation.referencesDavis A.W., Encyclopedia of Statistical Sciences, (2006)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., About test criteria in multivariate analysis, Braz J Probab Stat, 22, 1, pp. 35-59, (2008)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., Statistical theory of shape under elliptical models and singular value decompositions, ’’ J Multivariate Anal, 103, 1, pp. 77-92, (2012)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., Generalised shape theory via SV decomposition, Metrika, 75, pp. 541-565, (2012)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., Statistical theory of shape under elliptical models via QR decomposition, Statistics, 48, pp. 456-472, (2014)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., Elliptical affine shape distributions for real normed division algebras, ’’ J Multivariate Anal, 144, pp. 139-149, (2016)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., ‘Estimation of mean form and mean form difference under elliptical laws.’, Electron. J. Statist, 11, 1, pp. 2424-2460, (2017)
dc.relation.referencesDiaz-Garcia J.A., Caro-Lopera F.J., ‘‘Statistical theory of shape under elliptical models via polar decompositions,’’, Sankhyā A, 81, pp. 445-465, (2019)
dc.relation.referencesDiaz-Garcia J.A., Gutierrez J.R., Ramos-Quiroga R., Size-and-shape cone, shape disk and configuration densities for the elliptical models, Braz J Probab Stat, 17, pp. 135-146, (2003)
dc.relation.referencesDomokos C., Kato Z., Parametric estimation of affine deformations of planar shapes, Pattern Recognition, 43, pp. 569-578, (2010)
dc.relation.referencesDryden I.L., Mardia K.V., Statistical shape analysis, (1998)
dc.relation.referencesEcaberth O., Thiran J., Adaptative Hough transform for the detection of natural shapes under weak affine transformations, Pattern Recognition Lett, 25, pp. 1411-1419, (2004)
dc.relation.referencesGlasbey C.A., Mardia K.V., A penalized likelihood approach to image warping,” J. R. Stat. Soc. Ser. B, Stat. Methodol, 63, pp. 465-514, (2001)
dc.relation.referencesGoodall C.R., Procustes methods in the statistical analysis of shape (with discussion),” J. R. Stat. Soc. Ser. B, Stat. Methodol, 53, pp. 285-339, (1991)
dc.relation.referencesGoodall C.R., Mardia K.V., Multivariate aspects of shape theory, Ann. Statist, 21, pp. 848-866, (1993)
dc.relation.referencesGroisser D., Tagare H., On the Topology and Geometry of Spaces of Affine Shapes, J. Math. Imaging Vision, 34, pp. 222-233, (2009)
dc.relation.referencesHerz C.S., Bessel functions of matrix argument, Ann. Math, 61, pp. 474-523, (1955)
dc.relation.referencesHorgan G.W., Creasey A., Fenton B., Superimposing two dimensional gels to study genetic variation in malaria parasites, Electrophoresis, 13, pp. 871-875, (1992)
dc.relation.referencesJames A.T., Distributions of matrix variate and latent roots derived from normal samples, Ann. Math. Statist, 35, pp. 475-501, (1964)
dc.relation.referencesKendall D.G., Barden D., Carne T.K., Le H., Shape and Shape theory, (1999)
dc.relation.referencesKent J.T., Mardia K.V., Taylor C.C., Proceedings in Bioinformatics, Images and Wavelets, (2004)
dc.relation.referencesKoev P., Edelman A., ‘The efficient evaluation of the hypergeometric function of a matrix argument, Mathe. Comp, 75, pp. 833-846, (2006)
dc.relation.referencesLin W.S., Fang C.H., Synthesized affine invariant function for 2D shape recognition, Pattern Recognition, 40, pp. 1921-1928, (2007)
dc.relation.referencesLindeberg T., Garding J., Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure, Image and Vision Comput, 15, pp. 415-434, (1997)
dc.relation.referencesMai F., Chang C.Q., Hung Y.S., A subspace approach for matching 2D shapes under affine distortions, Pattern Recognition, 44, pp. 210-221, (2011)
dc.relation.referencesMardia K.V., Patrangenaru V., Directions and projective shapes, Ann. Statist, 33, pp. 1666-1699, (2005)
dc.relation.referencesMardia K.V., Goodall C.R., Walder A., Distributions of projective invariants and model-based machine vision, Adv. Appl. Probab, 28, pp. 641-661, (1996)
dc.relation.referencesMardia K.V., Patrangenaru V., Sugathadasa S., Barber S, Baxter PD, Mardia KV, Walls RE, editores. Quantitative Biology, Shape Analysis, and Wavelets, (2005)
dc.relation.referencesMokhtarian F., Abbasi S., Shape similarity retrieval under affine transforms, Pattern Recognition, 35, pp. 31-41, (2002)
dc.relation.referencesMuirhead R.J., Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, (2005)
dc.relation.referencesPatrangenaru V., Mardia K.V., Affine Shape Analysis and Image Analysis, Proceedings in Stochastic Geometry, Biological Structure and Images, pp. 57-62, (2003)
dc.relation.referencesQuintero J.H., Marino A., Siller L., Restrepo-Parra E., Caro-Lopera F.J., Rocking curves of gold nitride species prepared by arc pulsed-physical assisted plasma vapor deposition, Surface and Coatings Technology, 309, pp. 249-257, (2017)
dc.relation.referencesRamirez-Velasquez I.M., Bedoya-Calle A.H., Velez E., Caro-Lopera F.J., Dissociation Mode of the O–H Bond in Betanidin, pKa-Clusterization Prediction, and Molecular Interactions via Shape Theory and DFT Methods, Int. J. Mol. Sci, 24, (2023)
dc.relation.referencesRamirez-Velasquez I., Bedoya-Calle A.H., Velez E., Caro-Lopera F.J., Shape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteins, ACS Omega, 7, pp. 45991-46002, (2022)
dc.relation.referencesRamirez-Velasquez I.M., Velez E., Bedoya-Calle A.H., Caro-Lopera F.J., Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy, Molecules, 27, (2022)
dc.relation.referencesSmall C.G., The Statistical Theory of Shape, (1996)
dc.relation.referencesValencia G.M., Anaya J.A., Velasquez E.A., Ramo R., Caro-Lopera F.J., About validation-comparison of burned area products, Remote Sensing, 12, (2020)
dc.relation.referencesVillarreal-Rios A.L., Bedoya-Calle A.H., Caro-Lopera F.J., Ortiz-Mendez U., Garcia-Mendez M., Perez-Ramirez F.O., Ultrathin tunable conducting oxide films for near-IR applications: an introduction to spectroscopy shape theory, SN Appl. Sci, 1, (2019)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record