dc.contributor.author | Oviedo M.J.; Raymond J.; Blessent D.; Larmagnat S. | |
dc.date.accessioned | 2025-04-28T22:09:12Z | |
dc.date.available | 2025-04-28T22:09:12Z | |
dc.date.created | 2025 | |
dc.identifier.issn | 3756505 | |
dc.identifier.uri | http://hdl.handle.net/11407/8805 | |
dc.description | Geothermal targets may be found in naturally fractured rocks of meteorite impact craters hosting low temperature resources. We therefore conducted a study with the objective of evaluating the geothermal potential of the 400 million year old Charlevoix impact crater in Quebec (Canada). Finite element simulations of steady state groundwater flow and heat transfer were made based on field characterization that allowed for the evaluation of rock thermohydraulic properties. Simulations provided a definition of the temperature field in cross-sections of the crater up to 10 km depth. Results allowed quantification of the impact of the deep groundwater recharge, the rock thermal conductivity and the Earth heat flow on the temperature distribution at depth. The calculated geothermal gradient inside the Charlevoix crater reaches 31 °C km-1 in the most favorable areas. The average temperature at 3 km depth was 70 °C inside the crater and was higher compared to outside the crater. This suggests greater potential for low-temperature geothermal direct use in the crater. © 2024 | |
dc.language.iso | eng | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213036108&doi=10.1016%2fj.geothermics.2024.103243&partnerID=40&md5=fd3e5ea427481a43d127d50e385ad368 | |
dc.source | Geothermics | |
dc.source | Geothermics | |
dc.source | Scopus | |
dc.subject | Geo energy | |
dc.subject | Groundwater flow | |
dc.subject | Heat transfer | |
dc.subject | Impact crater | |
dc.subject | Numerical modelling | |
dc.subject | Geothermal fields | |
dc.subject | Geothermal wells | |
dc.subject | Underground heat transfer | |
dc.subject | Energy | |
dc.subject | Finite elements simulation | |
dc.subject | Fractured rock | |
dc.subject | Geo energy | |
dc.subject | Geothermal potential | |
dc.subject | Geothermal resources | |
dc.subject | Impact craters | |
dc.subject | Low-temperature resources | |
dc.subject | Meteorite impact | |
dc.subject | Resource potentials | |
dc.subject | Groundwater flow | |
dc.subject | Geo energy | |
dc.subject | Groundwater flow | |
dc.subject | Heat transfer | |
dc.subject | Impact crater | |
dc.subject | Numerical modelling | |
dc.title | Numerical assessment of the geothermal resource potential of the Charlevoix meteorite impact crater, Canada | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | |
dc.type.spa | Artículo revisado por pares | |
dc.identifier.doi | 10.1016/j.geothermics.2024.103243 | |
dc.relation.citationvolume | 127 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Oviedo M.J., Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, QC, Canada | |
dc.affiliation | Raymond J., Institut national de la recherche scientifique, Centre Eau Terre Environnement, Québec, QC, Canada | |
dc.affiliation | Blessent D., Universidad de Medellín, Environmental engineering program, Medellín, Colombia | |
dc.affiliation | Larmagnat S., Geological Survey of Canada, Québec Division, QC, Canada | |
dc.relation.references | (2021) | |
dc.relation.references | Aguilar-Ojeda J.A., Campos-Gaytan J.R., Villela A., Herrera-Oliva C.S., Ramirez-Hernandez J., Kretzschmar T.G., Understanding hydrothermal behavior of the Maneadero geothermal system, Ensenada, Baja California, Mexico, Geothermics., 89, (2021) | |
dc.relation.references | Aliyu M.D., Finkbeiner T., Chen H.P., Archer R.A., A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir, Energy, 262, (2023) | |
dc.relation.references | Bisdom K., Bertotti G., Nick H.M., The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs, Tectonophysics., 690, (2016) | |
dc.relation.references | Blum P., Campillo G., Kolbel T., Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany, Energy, 36, 5, pp. 3002-3011, (2011) | |
dc.relation.references | (2021) | |
dc.relation.references | (2015) | |
dc.relation.references | Chapelet M., Raymond J., Dezayes C., Évaluation du potentiel des anomalies géothermiques du bassin sédimentaire des basses-terres du Saint-Laurent (Québec, Canada), Mémoire de maîtrise, (2022) | |
dc.relation.references | Cheng Y., Zhang Y., Yu Z., Hu Z., Ma Y., Yang Y., Experimental and numerical studies on hydraulic fracturing characteristics with different injection flow rates in granite geothermal reservoir, Energy Science and Engineering, 9, 1, pp. 142-168, (2021) | |
dc.relation.references | Chong Q., Wang J., Gates I.D., Evaluation of closed-loop U-Tube deep borehole heat exchanger in the Basal Cambrian Sandstone formation, Canada. Geothermal Energy, 10, 1, (2022) | |
dc.relation.references | 3, pp. 493-604, (2006) | |
dc.relation.references | Cook D., Sigurjonsson H.AE., Davidsdottir B., Bogason S.G., An environmental life cycle cost assessment of the costs of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France, Geothermics., 103, (2022) | |
dc.relation.references | Comeau F.-A., Raymond J., Malo M., Dezayes C., Carreau M., Geothermal Potential of Northern Québec: A Regional Assessment, Geothermal Resources Council Transactions, 41, pp. 1076-1094, (2017) | |
dc.relation.references | Dezayes C., Genter A., Valley B., Overview of the fracture network at different scales within the granite reservoir of the EGS Soultz site (Alsace, France), Proceedings, World Geothermal Congress 2010, Bali, Indonesia, (2010) | |
dc.relation.references | (2010) | |
dc.relation.references | Freeze A., Cherry J., Groundwater, (1979) | |
dc.relation.references | Garcia D.D., Leite E.P., Vasconcelos M.A.R., Christou E., Crosta A.P., Distribution of gamma-ray elements in Cerro do Jarau impact structure and a proposal of geothermal modeling, An. Acad. Bras. Cienc., 96, 1, (2024) | |
dc.relation.references | Genter A., Evans K., Cuenot N., Fritsch D., Sanjuan B., Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS), Comptes Rendus - Geoscience, 342, 7-8, pp. 502-516, (2010) | |
dc.relation.references | Ghassemi A., A review of some rock mechanics issues in geothermal reservoir development, Geotech. Geol. Eng. (Dordr), 30, 3, pp. 647-664, (2012) | |
dc.relation.references | (2012) | |
dc.relation.references | Grieve R.A.F., Robertson P.B., Impact structures in Canada: Their recognition and characteristics, Journal of the Royal Astronomical Society of Canada, (1975) | |
dc.relation.references | Guillou-Frottier L., Mareschal J.C., Jaupart C., Gariepy C., Lapointe R., Bienfait G., Heat flow variations in the Grenville Province, Canada, Earth. Planet. Sci. Lett., 136, 3-4, pp. 447-460, (1995) | |
dc.relation.references | Guo T.R., Tong L.T., Huang Y.T., Metamorphic geothermal reservoir characterisation—A case study in the Jinlun geothermal area, Taitung, Taiwan, Geothermics., 74, (2018) | |
dc.relation.references | Grasby S.E., Allen D.M., Bell S., Chen Z., Ferguson G., Jessop A., Kelman M., Ko M., Majorowicz J., Moore M., Raymond J., (2012) | |
dc.relation.references | Hao Y., Fu P., Johnson S.M., Carrigan C.R., Numerical studies of coupled flow and heat transfer processes in hydraulically fractured geothermal reservoirs, Geothermal Resources Council Transactions, 36, pp. 453-458, (2012) | |
dc.relation.references | Hearty D.J., Mereu R.F., Wright C., Lateral variations in upper crustal structure below La Malbaie area from slowness, azimuth, and travel time measurements of teleseisms, Can. J. Earth Sci, 14, pp. 2284-2293, (1977) | |
dc.relation.references | Henkel H., The Bjorko geothermal energy project, Norges Geologiske Undersekelse Bulletin, 439, pp. 45-50, (2002) | |
dc.relation.references | Henkel H., Backstrom A., Bergman B., Stephansson O., Lindstrom M., Geothermal Energy from Impact Craters?, The Björkö Study. Proceeding, World Geothermal Congress 2005, pp. 24-29, (2005) | |
dc.relation.references | Holmberg H., Acuna J., Naess E., Sonju O.K., Thermal evaluation of coaxial deep borehole heat exchangers, Renew. Energy, 97, pp. 65-76, (2016) | |
dc.relation.references | Holzbecher E., Oberdorfer P., Maier F., Jin Y., Sauter M., Simulation of Deep Geothermal Heat Production, Proceedings, COMSOL Conference, Stuttgard, (2011) | |
dc.relation.references | Huet M., Chesnaux R., Boucher M.A., Poirier C., Comparing various approaches for assessing groundwater recharge at a regional scale in the Canadian Shield, Hydrological Sciences Journal, 61, 12, pp. 2267-2283, (2016) | |
dc.relation.references | Jaeger J., Sass J., Lees's topographic correction in Heat Flow and the geothermal flux in Tasmania, Geofisica Pura e Applicata, 54, pp. 53-63, (1963) | |
dc.relation.references | Jeong W.C., Cho Y.S., Song J.W., A numerical study of fluid flow and solute transport in a variable-aperture fracture using geostatistical method, KSCE Journal of Civil Engineering, 5, 4, pp. 357-369, (2001) | |
dc.relation.references | (1990) | |
dc.relation.references | Jessop A.M., The distribution of glacial perturbation of heat flow in Canada, Can. J. Earth. Sci., 8, 1, pp. 162-166, (1971) | |
dc.relation.references | Kohl T., Brenni R., Eugster W., System performance of a deep borehole heat exchanger, Geothermics., 31, pp. 687-708, (2002) | |
dc.relation.references | Kneafsey T., The EGS Collab Project: An intermediate-scale field test to address enhanced geothermal system challenges, E3S Web of Conferences, 205, (2020) | |
dc.relation.references | Langevin H., Fraser T., Raymond J., Assessment of thermo-hydraulic properties of rock samples near Takhini Hot Springs, Yukon, Yukon Exploration and Geology 2019, pp. 57-73, (2020) | |
dc.relation.references | Lee T.C., On Terrain Corrections in Terrestrial Heat Flow, PAGEOPH, 135, 1, pp. 1-13, (1991) | |
dc.relation.references | Lemieux Y., Analyse Structurale Des Failles Supracrustales De La Région De Charlevoix, Québec: Relations Avec L'impact Météoritique, (2001) | |
dc.relation.references | Lemieux Y., Tremblay A., Lavoie D., Structural analysis of supracrustal faults in the Charlevoix area, Quebec: Relation to impact cratering and the St-Laurent fault system, Can. J. Earth. Sci., 40, 2, pp. 221-235, (2003) | |
dc.relation.references | Lindal B., Industrial and other applications of geothermal energy, Geothermal Energy, pp. 135-148, (1973) | |
dc.relation.references | Loveless S., Pluymaekers M., Lagrou D., Eva, Doornenbal H., Laenen B., Mapping the Geothermal Potential of Fault Zones in the Belgium-Netherlands Border Region, Energy Procedia, 59, pp. 351-358, (2014) | |
dc.relation.references | Lukawski M.Z., Silverman R.L., Tester J.W., Uncertainty analysis of geothermal well drilling and completion costs, Geothermics., 64, pp. 382-391, (2016) | |
dc.relation.references | Lund J.W., Toth A.N., Direct utilization of geothermal energy 2020 worldwide review, Geothermics., 90, (2021) | |
dc.relation.references | Mareschal J.C., Jaupart C., Gariepy C., Cheng L.Z., Guillou-Frottier L., Bienfait G., Lapointe R., Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield, Can. J. Earth. Sci., 37, 2-3, pp. 399-414, (2000) | |
dc.relation.references | McLean M.L., Espinoza D.N., Thermal destressing: Implications for short-circuiting in enhanced geothermal systems, Renew. Energy, 202, pp. 736-755, (2023) | |
dc.relation.references | Minea V., Majorowicz J., Preliminary assessment of deep geothermal resources in Trois-Rivières area, Québec, GRC Transactions, 36, pp. 709-716, (2012) | |
dc.relation.references | Miranda M.M., Dezayes C., Giordano N., Kanzari I., Raymond J., Carvalho J., Fracture network caracterization as input for geothermal energy reaserch: Preliminary data from Kuujjuaq, Northern Québec, Canada, 43rd Workshop on Geothermal Reservoir Engineering, (2018) | |
dc.relation.references | Miranda M.M., Raymond J., Dezayes C., Wigston A., Perreault S., Multiscale fracture networks and their impact on hydroshearing response in the Canadian Shield (Kuujjuaq, Canada), Geomech. Geophys. Geo Energy Ge Resour., 9, 1, (2023) | |
dc.relation.references | Moreno D., Lopez-Sanchez J., Blessent D., Raymond J., Fault characterization and heat-transfer modeling to the Northwest of Nevado del Ruiz Volcano, J. South. Am. Earth. Sci., 88, pp. 50-63, (2018) | |
dc.relation.references | Nadeau L., Lamontagne M., Brouillette P., Locat J., Castonguay S., (2020) | |
dc.relation.references | Oviedo M.J., Raymond J., Blessent D., Larmagnat S., Lopez-Sanchez J., Thermohydraulic characterization of Charlevoix crater rocks, Proceedings, GeoCalgary 2022, (2022) | |
dc.relation.references | Oviedo M.J., Évaluation du potentiel géothermique du cratère d'impact météoritique de Charlevoix (Canada), Borealis, V1, (2023) | |
dc.relation.references | Earth Impact Database, (2001) | |
dc.relation.references | (2019) | |
dc.relation.references | Puura V., Plado J., Settings of Meteorite Impact Structures in the Svecofennian Crustal Domain, Impact Tectonics, pp. 211-245, (2005) | |
dc.relation.references | Qarinur M., Ogata S., Kinoshita N., Yasuhara H., Predictions of rock temperature evolution at the lahendong geothermal field by coupled numerical model with discrete fracture model scheme, Energies. (Basel), 13, 12, (2020) | |
dc.relation.references | Rajaobelison M., Raymond J., Malo M., Dezayes C., Larmagnat S., Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar, Geothermics., 104, (2022) | |
dc.relation.references | Raymond J., Malo M., Tanguay D., Grasby S.E., Bakhteyar F., Direct utilization of geothermal energy from coast to coast: a review of current applications and research in Canada, Proceedings of the World Geothermal Congress, Melbourne, Australia, (2015) | |
dc.relation.references | Robertson P.B., La Malbaie Structure, Quebec-A Palaeozoic Meteorite Impact Site, Meteoritics, 4, 2, pp. 89-112, (1968) | |
dc.relation.references | Robertson P.B., Zones of Shock Metamorphism At the Charlevoix impact Structure, 86, pp. 1630-1638, (1975) | |
dc.relation.references | Rondot J., Nouvel impact météoritique fossile? La structure semi-circulaire de Charlevoix, Can. J. Earth. Sci., 5, 5, pp. 1305-1317, (1968) | |
dc.relation.references | (1979) | |
dc.relation.references | Rondot J., L'Astroblème De Charlevoix, Cicatrisation Après L'impact D'une Grosse Météorite, 75, (1983) | |
dc.relation.references | Rondot J., Modèles d'astroblèmes d'après le déplacement des masses rocheuses: Charlevoix et le Ries, Canadian Journal of Earth Sciences, 44, 5, pp. 607-617, (2007) | |
dc.relation.references | (2019) | |
dc.relation.references | Seguin M.K., Frydecki J., Rondot J., La région de Charlevoix-Kamouraska (Québec): gravité et géologie, Atlantic Geology, 27, 2, pp. 81-95, (1991) | |
dc.relation.references | Seiler K.P., V.4- Evaluating the susceptibility of aquifers to pollution, Solid Waste: Assessment, Monitoring and Remediation, 4, pp. 673-691, (2004) | |
dc.relation.references | Seiler K.P., Lindner W., Near-surface and deep groundwaters, J. Hydrol. (Amst), 165, 2, pp. 33-44, (1995) | |
dc.relation.references | Tsoflias G.P., Bollinger G.A., Costain J.K., Common cyclicities in the seismicity and water level fluctuations at the charlevoix seismic zone on the St Lawrence River, Quebec, Canada, J. Geodyn., 19, 2, pp. 117-139, (1995) | |
dc.relation.references | Tanaka A., Okubo Y., Matsubayashi O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia, Tectonophysics., 306, pp. 461-470, (1999) | |
dc.relation.references | pp. 151-164, (2013) | |
dc.relation.references | Velez Marquez, Raymond J., Blessent D., Philippe M., Terrestrial heat flow evaluation from thermal response tests combined with temperature profiling, Physics and Chemistry of the Earth, 113, pp. 22-30, (2019) | |
dc.relation.references | Velez M.I., Taborda M.A., Miranda M., Moreno D., Raymond J., Lopez J., Blessent D., Daniele L., Oviedo M.J., Preliminary Thermohydraulic characterization of rock samples from two geothermal areas: Charlevoix crater (Canada) and Nevado del Ruiz Volcano (Colombia), Conference proceeding in World Geothermal Congress, Reykjavik, Iceland, pp. 1-10, (2020) | |
dc.relation.references | Versh E., Kirsimae K., Joeleht A., Development of potential ecological niches in impact-induced hydrothermal systems: The small-to-medium size impacts, Planetary and Space Science, 54, 15, pp. 1567-1574, (2006) | |
dc.relation.references | Westaway R., Younger P.L., Accounting for palaeoclimate and topography: A rigorous approach to correction of the British geothermal dataset, Geothermics., 48, pp. 31-51, (2013) | |
dc.relation.references | Wang T., Surge D., Mithen S., Seasonal temperature variability of the Neoglacial (3300-2500BP) and Roman Warm Period (2500-1600BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318, pp. 104-113, (2012) | |
dc.relation.references | Wang L., Liang X., Shi X., Han J., Chen Y., Zhang W., Heat transfer analysis of enhanced geothermal system based on heat-fluid-structure coupling model, Geofluids, 2023, (2023) | |
dc.relation.references | Witherspoon P.A., Wang J.S.Y., Iwai K., Gale J.E., Validity of cubic law for fluid flow in a deformable rock fracture, Water. Resour. Res., 16, 6, pp. 1016-1024, (1980) | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |