REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics

Thumbnail
Share this
Date
2025
Author
Ramirez-Muñoz A.; Forgionny A.; Muñoz-Saldaña J.; Flórez E.; Acelas N.

Citación

       
TY - GEN T1 - Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics Y1 - 2025 UR - http://hdl.handle.net/11407/8807 AB - This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g. Fourier-transform infrared (FTIR) characterization reveals the involvement of various functional groups in the adsorption process through hydrogen bonds and electron-donor–acceptor (EDA) interactions. X-ray diffraction (XRD) analysis confirms the presence of phases containing CO32−, PO43− ions, as well as elements such as Si and Fe, which contribute to the adsorption mechanism through hydrogen bonding and complexation, respectively. X-ray photoelectron spectroscopy (XPS) analysis further supports these interactions. Kinetic analysis shows rapid adsorption, which combines physical and chemical processes and leads to rapid attainment of equilibrium. This is due to the high affinity of WH-C450 for SMX, which allows for a fast and efficient adsorption process. Isothermal modeling reveals multilayer adsorption with favorable interactions. Thermodynamic analysis confirms the endothermic and temperature-dependent nature of the process. In addition, pH, adsorbent dose, and initial concentration are important in adsorption. Lower pH levels enhance cationic SMX adsorption, while higher adsorbent doses improve efficiency. Optimal conditions were identified by experimental design, enabling the establishment of a predictive model. Consequently, the SMX removal capacity is strongly correlated with the initial concentration. This research underscores the potential of WH-C450 for antibiotic removal in water treatment applications. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. ER - @misc{11407_8807, author = {}, title = {Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics}, year = {2025}, abstract = {This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g. Fourier-transform infrared (FTIR) characterization reveals the involvement of various functional groups in the adsorption process through hydrogen bonds and electron-donor–acceptor (EDA) interactions. X-ray diffraction (XRD) analysis confirms the presence of phases containing CO32−, PO43− ions, as well as elements such as Si and Fe, which contribute to the adsorption mechanism through hydrogen bonding and complexation, respectively. X-ray photoelectron spectroscopy (XPS) analysis further supports these interactions. Kinetic analysis shows rapid adsorption, which combines physical and chemical processes and leads to rapid attainment of equilibrium. This is due to the high affinity of WH-C450 for SMX, which allows for a fast and efficient adsorption process. Isothermal modeling reveals multilayer adsorption with favorable interactions. Thermodynamic analysis confirms the endothermic and temperature-dependent nature of the process. In addition, pH, adsorbent dose, and initial concentration are important in adsorption. Lower pH levels enhance cationic SMX adsorption, while higher adsorbent doses improve efficiency. Optimal conditions were identified by experimental design, enabling the establishment of a predictive model. Consequently, the SMX removal capacity is strongly correlated with the initial concentration. This research underscores the potential of WH-C450 for antibiotic removal in water treatment applications. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.}, url = {http://hdl.handle.net/11407/8807} }RT Generic T1 Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics YR 2025 LK http://hdl.handle.net/11407/8807 AB This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g. Fourier-transform infrared (FTIR) characterization reveals the involvement of various functional groups in the adsorption process through hydrogen bonds and electron-donor–acceptor (EDA) interactions. X-ray diffraction (XRD) analysis confirms the presence of phases containing CO32−, PO43− ions, as well as elements such as Si and Fe, which contribute to the adsorption mechanism through hydrogen bonding and complexation, respectively. X-ray photoelectron spectroscopy (XPS) analysis further supports these interactions. Kinetic analysis shows rapid adsorption, which combines physical and chemical processes and leads to rapid attainment of equilibrium. This is due to the high affinity of WH-C450 for SMX, which allows for a fast and efficient adsorption process. Isothermal modeling reveals multilayer adsorption with favorable interactions. Thermodynamic analysis confirms the endothermic and temperature-dependent nature of the process. In addition, pH, adsorbent dose, and initial concentration are important in adsorption. Lower pH levels enhance cationic SMX adsorption, while higher adsorbent doses improve efficiency. Optimal conditions were identified by experimental design, enabling the establishment of a predictive model. Consequently, the SMX removal capacity is strongly correlated with the initial concentration. This research underscores the potential of WH-C450 for antibiotic removal in water treatment applications. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g. Fourier-transform infrared (FTIR) characterization reveals the involvement of various functional groups in the adsorption process through hydrogen bonds and electron-donor–acceptor (EDA) interactions. X-ray diffraction (XRD) analysis confirms the presence of phases containing CO32−, PO43− ions, as well as elements such as Si and Fe, which contribute to the adsorption mechanism through hydrogen bonding and complexation, respectively. X-ray photoelectron spectroscopy (XPS) analysis further supports these interactions. Kinetic analysis shows rapid adsorption, which combines physical and chemical processes and leads to rapid attainment of equilibrium. This is due to the high affinity of WH-C450 for SMX, which allows for a fast and efficient adsorption process. Isothermal modeling reveals multilayer adsorption with favorable interactions. Thermodynamic analysis confirms the endothermic and temperature-dependent nature of the process. In addition, pH, adsorbent dose, and initial concentration are important in adsorption. Lower pH levels enhance cationic SMX adsorption, while higher adsorbent doses improve efficiency. Optimal conditions were identified by experimental design, enabling the establishment of a predictive model. Consequently, the SMX removal capacity is strongly correlated with the initial concentration. This research underscores the potential of WH-C450 for antibiotic removal in water treatment applications. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
URI
http://hdl.handle.net/11407/8807
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com