Show simple item record

dc.contributor.authorTun-Carrillo M.A.; Mora-Ramos M.E.; Gómez-Urrea H.A.; Pérez-Quintana I.V.
dc.date.accessioned2025-04-28T22:09:13Z
dc.date.available2025-04-28T22:09:13Z
dc.date.created2025
dc.identifier.issn34916
dc.identifier.urihttp://hdl.handle.net/11407/8808
dc.descriptionA theoretical study of some properties of light propagation in Rudin–Shapiro one-dimensional photonic heterostructures is presented. Particular attention is paid to hybrid periodic–quasiperiodic–periodic systems that include the Rudin–Shapiro sequence design in the non-periodic regions. Features such as omnidirectional reflection, spatial mode localization and full photonic band gap are discussed for different cases. The calculation tool employed is the transfer matrix/scattering matrix technique. The proposed hybrid heterostructure then are used as unitary cells of a photonic crystal which shows wide omnidirectional full gaps in the infrared regions of work. In some of the structures investigated, the proposal involves different pattern of dielectric contrast appears for the periodic part and for the quasiperiodic part. © 2024 Elsevier Inc.
dc.language.isoeng
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85210026842&doi=10.1016%2fj.aop.2024.169860&partnerID=40&md5=f234c464f585e9520b27df5ce1bfb768
dc.sourceAnnals of Physics
dc.sourceAnn. Phys.
dc.sourceScopus
dc.subjectDielectric hybrid heterostructures
dc.subjectOmnidirectional reflection
dc.subjectOmnidirectional TE+TM photonic gaps
dc.subjectRudin–Shapiro
dc.subjectDielectric hybrid heterostructures
dc.subjectOmnidirectional reflection
dc.subjectOmnidirectional TE+TM photonic gaps
dc.subjectRudin–Shapiro
dc.titlePhotonic properties of 1D multilayered structures based on quasiperiodic Rudin–Shapiro sequence
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo revisado por pares
dc.identifier.doi10.1016/j.aop.2024.169860
dc.relation.citationvolume472
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationTun-Carrillo M.A., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Morelos, Cuernavaca, CP. 62209, Mexico
dc.affiliationMora-Ramos M.E., Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Morelos, Cuernavaca, CP. 62209, Mexico
dc.affiliationGómez-Urrea H.A., Facultad de Ciencias Básicas, Universidad de Medellín, 050026, Medellín, Colombia
dc.affiliationPérez-Quintana I.V., Facultad de Ingeniería, Universidad Autónoma de Yucatán, Industrias No Contaminantes S/N, Sin Nombre de Col 27, Yucatán, Mérida, CP. 97302, Mexico
dc.relation.referencesYeh P., Yariv A., Hong C.-S., Electromagnetic propagation in periodic stratified media. I. General theory∗, J. Opt. Soc. Am., 67, 4, pp. 423-438, (1977)
dc.relation.referencesJoannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D., Photonic Crystals: Molding the Flow of Light (Second Edition), (2008)
dc.relation.referencesFink Y., Winn J.N., Fan S., Chen C., Michel J., Joannopoulos J.D., Thomas E.L., A dielectric omnidirectional reflector, Science, 282, 5394, pp. 1679-1682, (1998)
dc.relation.referencesDowling J.P., Mirror on the wall: You're omnidirectional after all?, Science, 282, 5395, pp. 1841-1842, (1998)
dc.relation.referencesJohn S., Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, pp. 2486-2489, (1987)
dc.relation.referencesTran A., Lo Y., Zhu Z., Haronian D., Mozdy E., Surface micromachined Fabry-Perot tunable filter, IEEE Photonics Technol. Lett., 8, 3, pp. 393-395, (1996)
dc.relation.referencesVardeny Z.V., Nahata A., Agrawal A., Optics of photonic quasicrystals, Nat. Photon., 7, 3, pp. 177-187, (2013)
dc.relation.referencesPoddubny A., Ivchenko E., Photonic quasicrystalline and aperiodic structures, Physica E: Low-dimensional Systems and Nanostructures, 42, 7, pp. 1871-1895, (2010)
dc.relation.referencesLusk D., Abdulhalim I., Placido F., Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal, Opt. Commun., 198, 4, pp. 273-279, (2001)
dc.relation.referencesTavakoli M., Jalili Y.S., One-dimensional fibonacci fractal photonic crystals and their optical characteristics, J. Theoret. Appl. Phys., 8, 1, (2014)
dc.relation.referencesTrabelsi Y., Bouazzi Y., Ben Ali N., Kanzari M., Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals, Opt. Quantum Electron., 48, 1, (2015)
dc.relation.referencesAli N.B., Alshammari S., Trabelsi Y., Alsaif H., Kahouli O., Elleuch Z., Tunable multi-band-stop filters using generalized Fibonacci photonic crystals for optical communication applications, Mathematics, 10, 8, (2022)
dc.relation.referencesSingh B.K., Rajput P.S., Dikshit A.K., Pandey P.C., Bambole V., Consequence of Fibonacci quasiperiodic sequences in 1-D photonic crystal refractive index sensor for the blood plasma and cancer cells detections, Opt. Quantum Electron., 54, 11, (2022)
dc.relation.referencesSahel S., Amri R., Bouaziz L., Gamra D., Lejeune M., Benlahsen M., Zellama K., Bouchriha H., Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2, Superlattices Microstruct., 97, pp. 429-438, (2016)
dc.relation.referencesChen X., Ni H., Zhao D., Wang Y., Optical fractal resonances in Cantor-like photonic crystals, Appl. Opt., 61, 26, pp. 7786-7792, (2022)
dc.relation.referencesQiu F., Peng R.W., Huang X.Q., Hu X.F., Wang M., Hu A., Jiang S.S., Feng D., Omnidirectional reflection of electromagnetic waves on Thue-Morse dielectric multilayers, Europhys. Lett., 68, 5, pp. 658-663, (2004)
dc.relation.referencesMoretti L., Rea I., Rotiroti L., Rendina I., Abbate G., Marino A., De Stefano L., Photonic band gaps analysis of thue-morse multilayers made of porous silicon, Opt. Express, 14, 13, pp. 6264-6272, (2006)
dc.relation.referencesZhang H.-F., Liu S.-B., Kong X.-K., Enlarged omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue–Morse aperiodic structure, Physica B, 410, pp. 244-250, (2013)
dc.relation.referencesRahimi H., Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range, Opt. Mater., 57, pp. 264-271, (2016)
dc.relation.referencesYue C., Tan W., Liu J., Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal, Superlattices Microstruct., 117, pp. 252-259, (2018)
dc.relation.referencesAgarwal V., Mora-Ramos M.E., Alvarado-Tenorio B., Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures, Photon. Nanostruct.: Fundam. Appl., 7, 2, pp. 63-68, (2009)
dc.relation.referencesSteurer W., Sutter-Widmer D., Photonic and phononic quasicrystals, J. Phys. D: Appl. Phys., 40, 13, (2007)
dc.relation.referencesDal Negro L., Boriskina S., Deterministic aperiodic nanostructures for photonics and plasmonics applications, Laser Photonics Rev., 6, 2, pp. 178-218, (2012)
dc.relation.referencesKohmoto M., Sutherland B., Iguchi K., Localization of optics: Quasiperiodic media, Phys. Rev. Lett., 58, pp. 2436-2438, (1987)
dc.relation.referencesGellermann W., Kohmoto M., Sutherland B., Taylor P.C., Localization of light waves in Fibonacci dielectric multilayers, Phys. Rev. Lett., 72, pp. 633-636, (1994)
dc.relation.referencesMontalban A., Velasco V.R., Tutor J., Fernandez-Velicia F.J., Phonon confinement in one-dimensional hybrid periodic/quasiregular structures, Phys. Rev. B, 70, (2004)
dc.relation.referencesMontalban A., Velasco V., Tutor J., Fernandez-Velicia F., Vibrations in one-dimensional hybrid Fibonacci/periodic structures, Rev. Mex. Fis., 53, pp. 12-16, (2007)
dc.relation.referencesKanzari M., Rezig B., Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures, J. Opt. A: Pure Appl. Opt., 3, 6, (2001)
dc.relation.referencesDong J.-W., Han P., Wang H.-Z., Broad omnidirectional reflection band forming using the combination of fibonacci quasi-periodic and periodic one-dimensional photonic crystals, Chin. Phys. Lett., 20, 11, (2003)
dc.relation.referencesEscorcia-Garcia J., Duque C.A., Mora-Ramos M.E., Optical properties of hybrid periodic/quasiregular dielectric multilayers, Superlattices Microstruct., 49, 3, pp. 203-208, (2011)
dc.relation.referencesPerez K.S., Estevez J.O., Mendez-Blas A., Arriaga J., Palestino G., Mora-Ramos M.E., Tunable resonance transmission modes in hybrid heterostructures based on porous silicon, Nanosc. Res. Lett., 7, 1, (2012)
dc.relation.referencesAsmi R., Ben Ali N., Kanzari M., Enhancement of light localization in hybrid Thue-Morse/periodic photonic crystals, J. Mater., 2016, (2016)
dc.relation.referencesBen Ali N., Optical Fabry–Perot filters using hybrid periodic, Fibonacci and Cantor photonic structures, Nano Commun. Netw., 13, pp. 34-42, (2017)
dc.relation.referencesVasconcelos M.S., Albuquerque E.L., Transmission fingerprints in quasiperiodic dielectric multilayers, Phys. Rev. B, 59, pp. 11128-11131, (1999)
dc.relation.referencesGomez-Urrea H.A., Toledo-Solano M., Mora-Ramos M.E., Reyes-Gomez E., Properties of plasmon-polariton modes in one-dimensional photonic superlattices made of Rudin-Shapiro bases, Opt. Quantum Electron., 45, 8, pp. 813-828, (2013)
dc.relation.referencesSegovia-Chaves F., Elsayed H.A., Transmittance spectrum in a rudin shapiro quasiperiodic one-dimensional photonic crystal with superconducting layers, Physica C, 587, (2021)
dc.relation.referencesGomez-Urrea H.A., Escorcia-Garcia J., Duque C.A., Mora-Ramos M.E., Analysis of light propagation in quasiregular and hybrid Rudin–Shapiro one-dimensional photonic crystals with superconducting layers, Photon. Nanostruct.: Fundam. Appl., 27, pp. 1-10, (2017)
dc.relation.referencesBouazzi Y., Ben Ali N., Alsaif H., Boudjemline A., Trabelsi Y., Torchani A., Computational modeling of quasi-periodic rudin-shapiro multilayered band gap structure, Eng. Technol. Appl. Sci. Res., 10, 3, pp. 5603-5607, (2020)
dc.relation.referencesCoppolaro M., Castaldi G., Galdi V., Effects of deterministic disorder at deeply subwavelength scales in multilayered dielectric metamaterials, Opt. Express, 28, 7, pp. 10199-10209, (2020)
dc.relation.referencesTransfer matrix, green function and related techniques, (2004)
dc.relation.referencesWave propagation from electrons to photonic crystals and left-handed materials, (2008)
dc.relation.referencesRumpf R.C., Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention, PIERB, 35, pp. 241-261, (2011)
dc.relation.referencesPerez-Alvarez R., Pernas-Salomon R., Velasco V.R., Relations between transfer matrices and numerical stability analysis to avoid the Ωd problem, SIAM J. Appl. Math., 75, 4, pp. 1403-1423, (2015)
dc.relation.referencesMalitson I., Interspecimen comparison of the refractive index of fused silica∗,†, J. Opt. Soc. Am., 55, 10, pp. 1205-1209, (1965)
dc.relation.referencesDeVore J.R., Refractive indices of rutile and sphalerite, J. Opt. Soc. Am., 41, 6, pp. 416-419, (1951)
dc.relation.referencesWood D.L., Nassau K., Refractive index of cubic zirconia stabilized with yttria, Appl. Opt., 21, 16, pp. 2978-2981, (1982)
dc.relation.referencesEscorcia-Garcia J., Mora-Ramos M.E., Optical reflectivity and spatial mode localization of white-noise random dielectric oxide multilayers, Opt. Commun., 432, pp. 1-7, (2019)
dc.relation.referencesBrillhart J., Morton P., A case study in mathematical research: The Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103, 10, pp. 854-869, (1996)
dc.relation.referencesGolay M., Static multislit spectromety and its application to the panoramic display of infrared spectra, J. Opt. Soc. Am., 41, pp. 468-472, (1951)
dc.relation.referencesRudin W., Some theorems on Fourier coefficients, Proc. Amer. Math. Soc., 10, pp. 855-859, (1959)
dc.relation.referencesShapiro H., ExTremal Problems for Polynomials and Power Series, (1951)
dc.relation.referencesTeitler S., Henvis B.W., Refraction in stratified, anisotropic media, J. Opt. Soc. Am., 60, 6, (1970)
dc.relation.referencesRumpf R.C., Computational electromagnetics, (2022)
dc.relation.referencesPanyaev I.S., Sannikov D.G., Dadoenkova N.N., Dadoenkova Y.S., Energy flux optimization in 1D multiperiodic four-component photonic crystals, Opt. Commun., 489, (2021)
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record