REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional-order modeling of myocardium structure effects on atrial fibrillation electrograms

Thumbnail
Share this
Date
2024
Author
Ugarte J.P
Tobón C.

Citación

       
TY - GEN T1 - Fractional-order modeling of myocardium structure effects on atrial fibrillation electrograms Y1 - 2024 UR - http://hdl.handle.net/11407/8840 PB - Elsevier Inc. AB - Atrial fibrillation (AF) is the most common cardiac arrhythmia with mechanisms of initiation and sustaining that are not fully understood. The clinical procedure for AF contemplates the analysis of the atrial electrograms, whose morphology has been correlated with the underlying structure of the atrial myocardium. This study employs a mathematical model incorporating fractional calculus to simulate cardiac electrical conduction, accounting for tissue structural inhomogeneities using complex-valued orders. Simulations of different wavefront propagation patterns were performed, and virtual electrograms were analyzed using an asymmetry factor. Our results evinced that the shapes of the action potential and the propagating wavefront can be modulated through the fractional order under both healthy and AF conditions. Moreover, the asymmetry factor changes with variations in the fractional order. For a given propagation pattern under AF conditions, variation intervals for the asymmetry factor can be generated by forming sets of simulations with different configurations for the fractional order, representing diverse samples of atrial tissue with varying degrees of structural heterogeneity. This approach successfully reproduces the electrogram negative deflection predominance seen in AF patients, which standard integer-order models cannot predict. Our fractional-order conduction model aligns with the effects of atrial structure on the electrical dynamics observed in clinical AF. Therefore, it offers a valuable tool for studying cardiac electrophysiology, encompassing both electrical and structural interactions of the tissue within a unified model. © 2024 The Authors ER - @misc{11407_8840, author = {}, title = {Fractional-order modeling of myocardium structure effects on atrial fibrillation electrograms}, year = {2024}, abstract = {Atrial fibrillation (AF) is the most common cardiac arrhythmia with mechanisms of initiation and sustaining that are not fully understood. The clinical procedure for AF contemplates the analysis of the atrial electrograms, whose morphology has been correlated with the underlying structure of the atrial myocardium. This study employs a mathematical model incorporating fractional calculus to simulate cardiac electrical conduction, accounting for tissue structural inhomogeneities using complex-valued orders. Simulations of different wavefront propagation patterns were performed, and virtual electrograms were analyzed using an asymmetry factor. Our results evinced that the shapes of the action potential and the propagating wavefront can be modulated through the fractional order under both healthy and AF conditions. Moreover, the asymmetry factor changes with variations in the fractional order. For a given propagation pattern under AF conditions, variation intervals for the asymmetry factor can be generated by forming sets of simulations with different configurations for the fractional order, representing diverse samples of atrial tissue with varying degrees of structural heterogeneity. This approach successfully reproduces the electrogram negative deflection predominance seen in AF patients, which standard integer-order models cannot predict. Our fractional-order conduction model aligns with the effects of atrial structure on the electrical dynamics observed in clinical AF. Therefore, it offers a valuable tool for studying cardiac electrophysiology, encompassing both electrical and structural interactions of the tissue within a unified model. © 2024 The Authors}, url = {http://hdl.handle.net/11407/8840} }RT Generic T1 Fractional-order modeling of myocardium structure effects on atrial fibrillation electrograms YR 2024 LK http://hdl.handle.net/11407/8840 PB Elsevier Inc. AB Atrial fibrillation (AF) is the most common cardiac arrhythmia with mechanisms of initiation and sustaining that are not fully understood. The clinical procedure for AF contemplates the analysis of the atrial electrograms, whose morphology has been correlated with the underlying structure of the atrial myocardium. This study employs a mathematical model incorporating fractional calculus to simulate cardiac electrical conduction, accounting for tissue structural inhomogeneities using complex-valued orders. Simulations of different wavefront propagation patterns were performed, and virtual electrograms were analyzed using an asymmetry factor. Our results evinced that the shapes of the action potential and the propagating wavefront can be modulated through the fractional order under both healthy and AF conditions. Moreover, the asymmetry factor changes with variations in the fractional order. For a given propagation pattern under AF conditions, variation intervals for the asymmetry factor can be generated by forming sets of simulations with different configurations for the fractional order, representing diverse samples of atrial tissue with varying degrees of structural heterogeneity. This approach successfully reproduces the electrogram negative deflection predominance seen in AF patients, which standard integer-order models cannot predict. Our fractional-order conduction model aligns with the effects of atrial structure on the electrical dynamics observed in clinical AF. Therefore, it offers a valuable tool for studying cardiac electrophysiology, encompassing both electrical and structural interactions of the tissue within a unified model. © 2024 The Authors OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia with mechanisms of initiation and sustaining that are not fully understood. The clinical procedure for AF contemplates the analysis of the atrial electrograms, whose morphology has been correlated with the underlying structure of the atrial myocardium. This study employs a mathematical model incorporating fractional calculus to simulate cardiac electrical conduction, accounting for tissue structural inhomogeneities using complex-valued orders. Simulations of different wavefront propagation patterns were performed, and virtual electrograms were analyzed using an asymmetry factor. Our results evinced that the shapes of the action potential and the propagating wavefront can be modulated through the fractional order under both healthy and AF conditions. Moreover, the asymmetry factor changes with variations in the fractional order. For a given propagation pattern under AF conditions, variation intervals for the asymmetry factor can be generated by forming sets of simulations with different configurations for the fractional order, representing diverse samples of atrial tissue with varying degrees of structural heterogeneity. This approach successfully reproduces the electrogram negative deflection predominance seen in AF patients, which standard integer-order models cannot predict. Our fractional-order conduction model aligns with the effects of atrial structure on the electrical dynamics observed in clinical AF. Therefore, it offers a valuable tool for studying cardiac electrophysiology, encompassing both electrical and structural interactions of the tissue within a unified model. © 2024 The Authors
URI
http://hdl.handle.net/11407/8840
Collections
  • Indexados Scopus [2099]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    Higher-order obstructed atomic insulator phase inpentagonal monolayer PdSe2 

    Nuñez V; Bravo S; Correa J.D; Chico L; Pacheco M. (Institute of PhysicsFacultad de Ciencias Básicas, 2024)
    We investigate a pentagonal monolayer of palladium diselenide, a stable two-dimensional system, as a material realization of a crystalline phase with nontrivial topological electronic properties. We find that its electronic ...
  • Thumbnail

    Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems 

    Cano J.A.; Correa-Espinal A.A.; Gómez-Montoya R.A.
    This article aims to introduce mathematical programming models for the joint order batching and picker routing problem (JOBPRP) and the joint order batching, sequencing and routing problem (JOBSPRP). For this purpose, we ...
  • Thumbnail

    Human Atrial Electrophysiological Models Under Fractional Derivative: Depolarization and Repolarization Dynamics During Normal and Fibrillation Conditions 

    Ugarte J.P.; Tobón C.
    Atrial fibrillation (AF) is the most common arrhythmia within the clinical context. Advanced stages of the AF involve several difficulties in its management and treatment. This occurs mostly because the initiation and ...
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com