dc.contributor.author | Castellanos-Cárdenas D.; Posada N.L.; Orozco-Duque A.; Sepúlveda-Cano L.M.; Castrillón F.; Camacho O.E.; Vásquez R.E. | |
dc.date.accessioned | 2025-04-28T22:09:43Z | |
dc.date.available | 2025-04-28T22:09:43Z | |
dc.date.created | 2024 | |
dc.identifier.issn | 19994893 | |
dc.identifier.uri | http://hdl.handle.net/11407/8848 | |
dc.description | Sliding mode control (SMC) has been widely used to control linear and nonlinear dynamics systems because of its robustness against parametric uncertainties and matched disturbances. Although SMC design has traditionally addressed process model-based approaches, the rapid advancements in instrumentation and control systems driven by Industry 4.0, coupled with the increased complexity of the controlled processes, have led to the growing acceptance of controllers based on data-driven techniques. This review article aims to explore the landscape of SMC, focusing specifically on data-driven techniques through a comprehensive systematic literature review that includes a bibliometric analysis of relevant documents and a cumulative production model to estimate the deceleration point of the scientific production of this topic. The most used SMC schemes and their integration with data-driven techniques and intelligent algorithms, including identifying the leading applications, are presented. © 2024 by the authors. | |
dc.language.iso | eng | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213479883&doi=10.3390%2fa17120543&partnerID=40&md5=7687b4bdb0d0609c0bc056041610a710 | |
dc.source | Algorithms | |
dc.source | Algorithms | |
dc.source | Scopus | |
dc.subject | Applications | |
dc.subject | Data-driven techniques | |
dc.subject | Intelligent algorithms | |
dc.subject | Sliding mode control | |
dc.subject | Systematic literature review | |
dc.subject | Robustness (control systems) | |
dc.subject | Data driven technique | |
dc.subject | Data-driven model | |
dc.subject | Intelligent Algorithms | |
dc.subject | Linear dynamic system | |
dc.subject | Model free | |
dc.subject | Non-linear dynamic systems | |
dc.subject | Parametric uncertainties | |
dc.subject | Sliding mode control design | |
dc.subject | Sliding-mode control | |
dc.subject | Systematic literature review | |
dc.subject | Sliding mode control | |
dc.subject | Applications | |
dc.subject | Data-driven techniques | |
dc.subject | Intelligent algorithms | |
dc.subject | Sliding mode control | |
dc.subject | Systematic literature review | |
dc.title | A Review on Data-Driven Model-Free Sliding Mode Control | |
dc.type | Review | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería de Sistemas | |
dc.publisher.program | Ingeniería de Telecomunicaciones | |
dc.type.spa | Artículo de revisión | |
dc.identifier.doi | 10.3390/a17120543 | |
dc.relation.citationvolume | 17 | |
dc.relation.citationissue | 12 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Castellanos-Cárdenas D., Faculty of Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Posada N.L., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia | |
dc.affiliation | Orozco-Duque A., Faculty of Engineering, Universidad de Medellín, Carrera 87 # 30-65, Medellín, 050026, Colombia | |
dc.affiliation | Sepúlveda-Cano L.M., Business School, Universidad EAFIT, Carrera 49 # Calle 7 Sur-50, Medellín, 050022, Colombia | |
dc.affiliation | Castrillón F., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia | |
dc.affiliation | Camacho O.E., Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito, 170157, Ecuador | |
dc.affiliation | Vásquez R.E., School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, 050031, Colombia | |
dc.relation.references | Utkin V., Poznyak A., Orlov Y., Polyakov A., Road Map for Sliding Mode Control Design, (2020) | |
dc.relation.references | Vaidyanathan S., Lien C., Applications of Sliding Mode Control in Science and Engineering, (2017) | |
dc.relation.references | Espin J., Castrillon F., Leiva H., Camacho O., A modified Smith predictor based–Sliding mode control approach for integrating processes with dead time, Alex. Eng. J, 61, pp. 10119-10137, (2022) | |
dc.relation.references | Morales L., Aguilar J., Camacho O., Rosales A., An intelligent sliding mode controller based on LAMDA for a class of SISO uncertain systems, Inf. Sci, 567, pp. 75-99, (2021) | |
dc.relation.references | Emelyanov S.V., Control of first order delay systems by means of an astatic controller and nonlinear correction, Autom Remote Control, 8, pp. 212-222, (1959) | |
dc.relation.references | Utkin V.I., Variable Structure Systems with Sliding Modes, IEEE Trans. Autom. Control, 22, pp. 212-222, (1977) | |
dc.relation.references | Steinberger M., Horn M., Fridman L., Variable-Structure Systems and Sliding-Mode Control: From Theory to Practice, (2020) | |
dc.relation.references | Liu J., Gao Y., Yin Y., Wang J., Luo W., Sun G., Sliding Mode Control Methodology in the Applications of Industrial Power Systems, (2020) | |
dc.relation.references | Singh A., Ghosh A., Comparison of Quantitative Feedback Theory Dependent Controller with Conventional PID and Sliding Mode Controllers on DC-DC Boost Converter for Microgrid Applications, Technol. Econ. Smart Grids Sustain. Energy, 7, (2022) | |
dc.relation.references | Gambhire S.J., Kishore D.R., Londhe P.S., Pawar S.N., Review of sliding mode based control techniques for control system applications, Int. J. Dyn. Control, 9, pp. 363-378, (2021) | |
dc.relation.references | Bandyopadhyay B., Deepak F., Kim K.S., Bandyopadhyay B., Deepak F., Kim K.S., Introduction, Sliding Mode Control Using Novel Sliding Surfaces, pp. 1-15, (2009) | |
dc.relation.references | Cao J., Zhou J., Chen J., Hu A., Hu M., Sliding Mode Control for Discrete-Time Systems with Randomly Occurring Uncertainties and Nonlinearities Under Hybrid Cyber Attacks, Circuits Syst. Signal Process, 40, pp. 5864-5885, (2021) | |
dc.relation.references | Wang J., Chen M.Z., Zhang L., Observer-based discrete-time sliding mode control for systems with unmatched uncertainties, J. Frankl. Inst, 358, pp. 8470-8484, (2021) | |
dc.relation.references | Dehri K., Messaoud A., Abdennour R.B., A discrete output feedback 2-SMC using Linear Matrix Inequalities and adaptive switching gain approaches: Real application on a chemical reactor, J. Vib. Control, 29, pp. 2116-2128, (2022) | |
dc.relation.references | Lee H., Utkin V.I., Chattering suppression methods in sliding mode control systems, Annu. Rev. Control, 31, pp. 179-188, (2007) | |
dc.relation.references | Shtessel Y., Edwards C., Fridman L., Levant A., Sliding Mode Control and Observation, (2014) | |
dc.relation.references | Castellanos-Cardenas D., Castrillan F., Vasquez R.E., Smith C., PID Tuning Method Based on IMC for Inverse-Response Second-Order Plus Dead Time Processes, Processes, 8, (2020) | |
dc.relation.references | Hou Z.S., Wang Z., From model-based control to data-driven control: Survey, classification and perspective, Inf. Sci, 235, pp. 3-35, (2013) | |
dc.relation.references | Prag K., Woolway M., Celik T., Toward Data-Driven Optimal Control: A Systematic Review of the Landscape, IEEE Access, 10, pp. 32190-32212, (2022) | |
dc.relation.references | Brunton S., Kutz J., Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, (2022) | |
dc.relation.references | Precup R., Roman R., Safaei A., Data-Driven Model-Free Controllers, (2022) | |
dc.relation.references | Lamnabhi-Lagarrigue F., Annaswamy A., Engell S., Isaksson A., Khargonekar P., Murray R.M., Nijmeijer H., Samad T., Tilbury D., Van den Hof P., Systems & Control for the future of humanity, research agenda: Current and future roles, impact and grand challenges, Annu. Rev. Control, 43, pp. 1-64, (2017) | |
dc.relation.references | Ivanov D., Sethi S., Dolgui A., Sokolov B., A survey on control theory applications to operational systems, supply chain management, and Industry 4.0, Annu. Rev. Control, 46, pp. 134-147, (2018) | |
dc.relation.references | Smarra F., Jain A., de Rubeis T., Ambrosini D., DInnocenzo A., Mangharam R., Data-driven model predictive control using random forests for building energy optimization and climate control, Appl. Energy, 226, pp. 1252-1272, (2018) | |
dc.relation.references | Guo D., Ling S., Rong Y., Huang G.Q., Towards synchronization-oriented manufacturing planning and control for Industry 4.0 and beyond, IFAC-PapersOnLine, 55, pp. 163-168, (2022) | |
dc.relation.references | De Persis C., Tesi P., Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness, IEEE Trans. Autom. Control, 65, pp. 909-924, (2020) | |
dc.relation.references | Huang B., Kadali R., Dynamic Modeling, Predictive Control and Performance Monitoring: A Data-driven Subspace Approach, (2008) | |
dc.relation.references | Tang W., Daoutidis P., Data-Driven Control: Overview and Perspectives, Proceedings of the 2022 American Control Conference (ACC), pp. 1048-1064 | |
dc.relation.references | Benosman M., Model-based vs data-driven adaptive control: An overview, Int. J. Adapt. Control Signal Process, 32, pp. 753-776, (2018) | |
dc.relation.references | Middleton R.H., Adaptive Control: Overview, Encyclopedia of Systems and Control, pp. 18-20, (2021) | |
dc.relation.references | Badgwell T.A., Qin S.J., Model Predictive Control in Practice, Encyclopedia of Systems and Control, pp. 1239-1252, (2021) | |
dc.relation.references | Verheijen P., Breschi V., Lazar M., Handbook of linear data-driven predictive control: Theory, implementation and design, Annu. Rev. Control, 56, (2023) | |
dc.relation.references | Ljung L., System Identification: An Overview, Encyclopedia of Systems and Control, pp. 2302-2317, (2021) | |
dc.relation.references | Astrom K., Hang C., Persson P., Ho W., Towards intelligent PID control, Automatica, 28, pp. 1-9, (1992) | |
dc.relation.references | Yamamoto T., Kurozumi R., Fujisawa S., A Design of CMAC Based Intelligent PID Controllers, Proceedings of the Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003, pp. 471-478, (2003) | |
dc.relation.references | Fliess M., Join C., Intelligent PID controllers, Proceedings of the 2008 16th Mediterranean Conference on Control and Automation, pp. 326-331 | |
dc.relation.references | Rsetam K., Al-Rawi M., Cao Z., Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component, ISA Trans, 130, pp. 152-162, (2022) | |
dc.relation.references | Hou Z., Jin S., Model Free Adaptive Control: Theory and Applications, (2014) | |
dc.relation.references | Hou M., Wang Y., Data-driven adaptive terminal sliding mode control with prescribed performance, Asian J. Control, 23, pp. 774-785, (2021) | |
dc.relation.references | An C., Jia S., Zhou J., Wang C., Fast Model-Free Learning for Controlling a Quadrotor UAV with Designed Error Trajectory, IEEE Access, 10, pp. 79669-79680, (2022) | |
dc.relation.references | Esmaeili B., Madani S.S., Salim M., Baradarannia M., Khanmohammadi S., Model-free adaptive iterative learning integral terminal sliding mode control of exoskeleton robots, J. Vib. Control, 28, pp. 3120-3139, (2022) | |
dc.relation.references | Hou Z., Yu X., Lu P., Terminal Sliding Mode Control for Quadrotors with Chattering Reduction and Disturbances Estimator Theory and Application, J. Intell. Robot. Syst, 105, (2022) | |
dc.relation.references | Yu Y., Liu X., Model-Free Fractional-Order Sliding Mode Control of Electric Drive System Based on Nonlinear Disturbance Observer, Fractal Fract, 6, (2022) | |
dc.relation.references | Ardjal A., Bettayeb M., Mansouri R., Improved model-free fractional-order intelligent proportional–integral fractional-order sliding mode control with anti-windup compensator, Trans. Inst. Meas. Control, 44, pp. 3092-3106, (2022) | |
dc.relation.references | Johansyah M.D., Sambas A., Mobayen S., Vaseghi B., Al-Azzawi S.F., Sukono, Sulaiman I.M., Dynamical Analysis and Adaptive Finite-Time Sliding Mode Control Approach of the Financial Fractional-Order Chaotic System, Mathematics, 11, (2023) | |
dc.relation.references | Ebrahimi N., Ozgoli S., Ramezani A., Data-driven sliding mode control: A new approach based on optimization, Int. J. Control, 93, pp. 1980-1988, (2020) | |
dc.relation.references | Gheisarnejad M., Akhbari A., Rahimi M., Andresen B., Khooban M.H., Reducing Impact of Constant Power Loads on DC Energy Systems by Artificial Intelligence, IEEE Trans. Circuits Syst. II Express Briefs, 69, pp. 4974-4978, (2022) | |
dc.relation.references | Zhang Y., Ma L., Yang C., Dai W., Reinforcement Learning-Based Sliding Mode Tracking Control for the Two-Time-Scale Systems: Dealing With Actuator Attacks, IEEE Trans. Circuits Syst. II Express Briefs, 69, pp. 3819-3823, (2022) | |
dc.relation.references | Afsi N., Bakir T., Sakly A., Othman S., Two concurrent β-variable adaptive model-free controls of a seeded batch crystallizer, Trans. Inst. Meas. Control, 45, pp. 533-545, (2023) | |
dc.relation.references | Yuan D., Wang Y., Data Driven Model-Free Adaptive Control Method for Quadrotor Formation Trajectory Tracking Based on RISE and ISMC Algorithm, Sensors, 21, (2021) | |
dc.relation.references | Hou S., Wang C., Chu Y., Fei J., Neural network–based adaptive fractional-order terminal sliding mode control, Trans. Inst. Meas. Control, 44, pp. 3107-3117, (2022) | |
dc.relation.references | Liu H., Cheng Q., Xiao J., Hao L., Data-driven adaptive integral terminal sliding mode control for uncertain SMA actuators with input saturation and prescribed performance, ISA Trans, 128, pp. 624-632, (2022) | |
dc.relation.references | Ding L., Liu K., Zhu G., Wang Y., Li Y., Adaptive Robust Control via a Nonlinear Disturbance Observer for Cable-driven Aerial Manipulators, Int. J. Control. Autom. Syst, 21, pp. 604-615, (2023) | |
dc.relation.references | Tian Y., Su B., Model-Free Predictive Control for a Kind of High Order Nonlinear Systems, J. Harbin Inst. Technol, 29, pp. 62-69, (2022) | |
dc.relation.references | Jiang X., Huang L., Peng M., Li Z., Yang K., Nonlinear model predictive control using symbolic computation on autonomous marine surface vehicle, J. Mar. Sci. Technol, 27, pp. 482-491, (2022) | |
dc.relation.references | Song T., Fang L., Wang H., Model-free finite-time terminal sliding mode control with a novel adaptive sliding mode observer of uncertain robot systems, Asian J. Control, 24, pp. 1437-1451, (2022) | |
dc.relation.references | Li Z., Zhang Z., Feng S., Wang J., Guo X., Sun H., A new sensorless control strategy of the PMLSM based on an ultra-local model velocity control system, Mech. Sci, 13, pp. 761-770, (2022) | |
dc.relation.references | Sun Z., Deng Y., Wang J., Yang T., Wei Z., Cao H., Finite Control Set Model-Free Predictive Current Control of PMSM With Two Voltage Vectors Based on Ultralocal Model, IEEE Trans. Power Electron, 38, pp. 776-788, (2023) | |
dc.relation.references | Xiao H., Zhao D., Gao S., Spurgeon S.K., Sliding mode predictive control: A survey, Annu. Rev. Control, 54, pp. 148-166, (2022) | |
dc.relation.references | Hamza M.F., Yap H.J., Choudhury I.A., Chiroma H., Kumbasar T., A survey on advancement of hybrid type 2 fuzzy sliding mode control, Neural Comput. Appl, 30, pp. 331-353, (2018) | |
dc.relation.references | George J., Mani G., Alexander Stonier A., An extensive critique of sliding mode control and adaptive neuro-fuzzy inference system for nonlinear system, Asian J. Control, 24, pp. 2548-2564, (2022) | |
dc.relation.references | Yu X., Feng Y., Man Z., Terminal Sliding Mode Control - An Overview, IEEE Open J. Ind. Electron. Soc, 2, pp. 36-52, (2021) | |
dc.relation.references | Hu J., Zhang H., Liu H., Yu X., A survey on sliding mode control for networked control systems, Int. J. Syst. Sci, 52, pp. 1129-1147, (2021) | |
dc.relation.references | Zhou W., Wang Y., Liang Y., Sliding mode control for networked control systems: A brief survey, ISA Trans, 124, pp. 249-259, (2022) | |
dc.relation.references | Ganapathy A., Santha K., Review of sliding mode observers for sensorless control of permanent magnet synchronous motor drives, Int. J. Power Electron. Drive Syst, 9, pp. 46-54, (2018) | |
dc.relation.references | Zaihidee F.M., Mekhilef S., Mubin M., Robust speed control of pmsm using sliding mode control (smc)-a review, Energies, 12, (2019) | |
dc.relation.references | Zuo Y., Lai C., Iyer K.L.V., A Review of Sliding Mode Observer Based Sensorless Control Methods for PMSM Drive, IEEE Trans. Power Electron, 38, pp. 11352-11367, (2023) | |
dc.relation.references | Yu L., Huang J., Luo W., Chang S., Sun H., Tian H., Sliding-Mode Control for PMLSM Position Control—A Review, Actuators, 12, (2023) | |
dc.relation.references | Ahmad F.F., Ghenai C., Hamid A.K., Bettayeb M., Application of sliding mode control for maximum power point tracking of solar photovoltaic systems: A comprehensive review, Annu. Rev. Control, 49, pp. 173-196, (2020) | |
dc.relation.references | Komurcugil H., Biricik S., Bayhan S., Zhang Z., Sliding Mode Control: Overview of Its Applications in Power Converters, IEEE Ind. Electron. Mag, 15, pp. 40-49, (2021) | |
dc.relation.references | Sami I., Ullah S., Khan L., Al-Durra A., Ro J.S., Integer and Fractional-Order Sliding Mode Control Schemes in Wind Energy Conversion Systems: Comprehensive Review, Comparison, and Technical Insight, Fractal Fract, 6, (2022) | |
dc.relation.references | Wu L., Liu J., Vazquez S., Mazumder S.K., Sliding Mode Control in Power Converters and Drives: A Review, IEEE/CAA J. Autom. Sin, 9, pp. 392-406, (2022) | |
dc.relation.references | Pilloni A., Franceschelli M., Pisano A., Usai E., On the variable structure control approach with sliding modes to robust finite-time consensus problems: A methodological overview based on nonsmooth analysis, Annu. Rev. Control, 55, pp. 338-355, (2023) | |
dc.relation.references | Riaz U., Tayyeb M., Amin A.A., A review of sliding mode control with the perspective of utilization in fault tolerant control, Recent Adv. Electr. Electron. Eng, 14, pp. 312-324, (2021) | |
dc.relation.references | Liu Q., Jiang B., Wu Z., Chen Z., Hao W., Sliding Mode Control and Its Application in Switched Systems: A Survey, Discret. Contin. Dyn. Syst.-Ser. S, 16, pp. 1856-1875, (2023) | |
dc.relation.references | Mat-Noh M., Mohd-Mokhtar R., Arshad M., Zain Z.M., Khan Q., Review of sliding mode control application in autonomous underwater vehicles, Indian J. Geo-Mar. Sci, 48, pp. 973-984, (2019) | |
dc.relation.references | Slotine J.J.E., Li W., Applied Nonlinear Control, 199, (1991) | |
dc.relation.references | Camacho O., Smith C.A., Sliding mode control: An approach to regulate nonlinear chemical processes, ISA Trans, 39, pp. 205-218, (2000) | |
dc.relation.references | Karami-Mollaee A., Barambones O., Dynamic sliding mode control of dc-dc converter to extract the maximum power of photovoltaic system using dual sliding observer, Electronics, 11, (2022) | |
dc.relation.references | Sharma N.K., Sivaramakrishnan J., Discrete-Time Higher Order Sliding Mode: The Concept and the Control, pp. 1-96, (2019) | |
dc.relation.references | Fridman L., Levant A., Higher-Order Sliding Modes, Sliding Mode Control in Engineering, pp. 53-102, (2002) | |
dc.relation.references | Bartolini G., Fridman L., Pisano A., Usai E., Discontinuous Homogeneous Control, Modern Sliding Mode Control Theory: New Perspectives and Applications, pp. 71-96, (2008) | |
dc.relation.references | Utkin V., Discussion Aspects of High-Order Sliding Mode Control, IEEE Trans. Autom. Control, 61, pp. 829-833, (2016) | |
dc.relation.references | Fridman L., Barbot J.P., Plestan F., Recent Trends in Sliding Mode Control, pp. 1-419, (2016) | |
dc.relation.references | Moreno J.A., Fridman L., Lyapunov-based HOSM control, Rev. Iberoam. Autom. Inform. Ind, 19, pp. 394-406, (2022) | |
dc.relation.references | Levant A., Sliding order and sliding accuracy in sliding mode control, Int. J. Control, 58, pp. 1247-1263, (1993) | |
dc.relation.references | Ferrara A., Sliding Mode Control of Vehicle Dynamics, pp. 1-295, (2017) | |
dc.relation.references | Moreno J.A., Discontinuous Integral Control for Systems with Relative Degree Two, pp. 187-218, (2018) | |
dc.relation.references | Perez-Ventura U., Fridman L., When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? Frequency domain criteria, Int. J. Robust Nonlinear Control, 29, pp. 810-828, (2019) | |
dc.relation.references | Gallardo Hernandez A.G., Fridman L., Levant A., Shtessel Y., Leder R., Revilla Monsalve C., Islas Andrade S., High-Order Sliding-Mode control of blood glucose concentration via practical relative degree identification, Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 5786-5791 | |
dc.relation.references | Rosales A., Fridman L., Shtessel Y., Practical relative degree in SMC systems: Frequency domain approach, Proceedings of the 2014 13th International Workshop on Variable Structure Systems (VSS), pp. 1-5 | |
dc.relation.references | Fridman L., Moreno J., Iriarte R., Sliding Mode Enforcement after 1990: Main Results and Some Open Problems, Sliding Modes after the First Decade of the 21st Century: State of the Art, pp. 3-57, (2012) | |
dc.relation.references | Venkataraman S.T., Gulati S., Control of Nonlinear Systems Using Terminal Sliding Modes, Proceedings of the 1992 American Control Conference, pp. 891-893 | |
dc.relation.references | Wijaya A.A., Darsivan F.J., Solihin M.I., Wahyudi, Akmeliawati R., Terminal sliding mode control for active engine mounting system, Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 417-420 | |
dc.relation.references | Lee S.H., Park J.B., Choi Y.H., Finite time control of nonlinear underactuated systems using terminal sliding surface, Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, pp. 626-631 | |
dc.relation.references | Chiu C.S., Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems, Automatica, 48, pp. 316-326, (2012) | |
dc.relation.references | Eray O., Tokat S., The design of a fractional-order sliding mode controller with a time-varying sliding surface, Trans. Inst. Meas. Control, 42, pp. 3196-3215, (2020) | |
dc.relation.references | Feng Y., Yu X., Han F., High-Order Terminal Sliding-Mode Observer for Parameter Estimation of a Permanent-Magnet Synchronous Motor, IEEE Trans. Ind. Electron, 60, pp. 4272-4280, (2013) | |
dc.relation.references | Ahmed S., Wang H., Tian Y., Adaptive High-Order Terminal Sliding Mode Control Based on Time Delay Estimation for the Robotic Manipulators with Backlash Hysteresis, IEEE Trans. Syst. Man, Cybern. Syst, 51, pp. 1128-1137, (2021) | |
dc.relation.references | Van M., Ge S.S., Ren H., Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control, IEEE Trans. Cybern, 47, pp. 1681-1693, (2017) | |
dc.relation.references | Duong T.T.C., Nguyen C.C., Tran T.D., Synchronization Sliding Mode Control of Closed-Kinematic Chain Robot Manipulators with Time-Delay Estimation, Appl. Sci, 12, (2022) | |
dc.relation.references | Ding L., Ma R., Wu Z., Qi R., Ruan W., Optimal Joint Space Control of a Cable-Driven Aerial Manipulator, Comput. Model. Eng. Sci, 135, pp. 441-464, (2023) | |
dc.relation.references | Das S., Functional Fractional Calculus for System Identification and Controls, pp. 1-240, (2008) | |
dc.relation.references | Pisano A., Rapaic M., Usai E., Second-Order Sliding Mode Approaches to Control and Estimation for Fractional Order Dynamics, Sliding Modes After the First Decade of the 21st Century: State of the Art, pp. 169-197, (2012) | |
dc.relation.references | Dastjerdi A.A., Vinagre B.M., Chen Y., HosseinNia S.H., Linear fractional order controllers: A survey in the frequency domain, Annu. Rev. Control, 47, pp. 51-70, (2019) | |
dc.relation.references | Gude J.J., Garcia Bringas P., Herrera M., Rincon L., Di Teodoro A., Camacho O., Fractional-order model identification based on the process reaction curve: A unified framework for chemical processes, Results Eng, 21, (2024) | |
dc.relation.references | Shah P., Sekhar R., Sharma D., Penubadi H.R., Fractional order control: A bibliometric analysis (2000–2022), Results Control Optim, 14, (2024) | |
dc.relation.references | Pinto C.M., Carvalho A.R., Effect of drug-resistance in a fractional complex-order model for HIV infection, IFAC-PapersOnLine, 48, pp. 188-189, (2015) | |
dc.relation.references | Varga B., Tar J.K., Horvath R., Fractional order inspired iterative adaptive control, Robotica, 42, pp. 482-509, (2024) | |
dc.relation.references | Lurie B.J., Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller, U.S. Patent, (1994) | |
dc.relation.references | Morsali J., Zare K., Tarafdar Hagh M., MGSO optimised TID-based GCSC damping controller in coordination with AGC for diverse-GENCOs multi-DISCOs power system with considering GDB and GRC non-linearity effects, IET Gener. Transm. Distrib, 11, pp. 193-208, (2017) | |
dc.relation.references | Guha D., Roy P.K., Banerjee S., Maiden application of SSA-optimised CC-TID controller for load frequency control of power systems, IET Gener. Transm. Distrib, 13, pp. 1110-1120, (2019) | |
dc.relation.references | Ahmed M., Magdy G., Khamies M., Kamel S., Modified TID controller for load frequency control of a two-area interconnected diverse-unit power system, Int. J. Electr. Power Energy Syst, 135, (2022) | |
dc.relation.references | Oustaloup A., Systèmes Asservis Linéaires D’ordre Fractionnaire: Théorie et Pratique, (1983) | |
dc.relation.references | Yousfi N., Melchior P., Lanusse P., Derbel N., Oustaloup A., Decentralized CRONE control of nonsquare multivariable systems in path-tracking design, Nonlinear Dyn, 76, pp. 447-457, (2014) | |
dc.relation.references | Lanusse P., Sabatier J., Oustaloup A., Fractional Order PID and First Generation CRONE Control System Design, Fractional Order Differentiation and Robust Control Design: CRONE, H-infinity and Motion Control, pp. 63-105, (2015) | |
dc.relation.references | Yessef M., Bossoufi B., Taoussi M., Motahhir S., Lagrioui A., Chojaa H., Lee S., Kang B.G., Abouhawwash M., Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller, Energies, 15, (2022) | |
dc.relation.references | Podlubny I., Fractional-Order Systems and Fractional-Order Controllers, 12, pp. 1-18, (1994) | |
dc.relation.references | Sharma R., Rana K., Kumar V., Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator, Expert Syst. Appl, 41, pp. 4274-4289, (2014) | |
dc.relation.references | Zeng G.Q., Chen J., Dai Y.X., Li L.M., Zheng C.W., Chen M.R., Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization, Neurocomputing, 160, pp. 173-184, (2015) | |
dc.relation.references | Hekimoglu B., Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm, IEEE Access, 7, pp. 38100-38114, (2019) | |
dc.relation.references | Monje C.A., Calderon A.J., Vinagre B.M., Feliu V., The fractional order lead compensator, Proceedings of the ICCC 2004—Second IEEE International Conference on Computational Cybernetics, pp. 347-352 | |
dc.relation.references | Zhang X., Lai L.J., Zhu L.M., Data-driven fractional order phase-lead and proportional–integral feedback control strategy with application to a reluctance-actuated compliant micropositioning system, Sens. Actuators A Phys, 348, (2022) | |
dc.relation.references | Mondal R., Dey J., An Extended Experimental Study on Control of Unstable and Non-Minimum Phase Plants With the Cascaded Form of a Fractional Order Compensator, IEEE Trans. Ind. Appl, 59, pp. 3086-3097, (2023) | |
dc.relation.references | Liu H., Pan Y., Li S., Chen Y., Adaptive Fuzzy Backstepping Control of Fractional-Order Nonlinear Systems, IEEE Trans. Syst. Man Cybern. Syst, 47, pp. 2209-2217, (2017) | |
dc.relation.references | Nikdel N., Badamchizadeh M., Azimirad V., Nazari M.A., Fractional-Order Adaptive Backstepping Control of Robotic Manipulators in the Presence of Model Uncertainties and External Disturbances, IEEE Trans. Ind. Electron, 63, pp. 6249-6256, (2016) | |
dc.relation.references | Bouzeriba A., Boulkroune A., Bouden T., Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control, Neural Comput. Appl, 27, pp. 1349-1360, (2016) | |
dc.relation.references | Gong P., Lan W., Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies, Automatica, 92, pp. 92-99, (2018) | |
dc.relation.references | Fang Y., Fei J., Cao D., Adaptive Fuzzy-Neural Fractional-Order Current Control of Active Power Filter with Finite-Time Sliding Controller, Int. J. Fuzzy Syst, 21, pp. 1533-1543, (2019) | |
dc.relation.references | Monje C., Chen Y., Vinagre B., Xue D., Feliu V., Fractional-Order Systems and Controls, (2010) | |
dc.relation.references | Yin C., Chen Y., Zhong S.M., Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems, Automatica, 50, pp. 3173-3181, (2014) | |
dc.relation.references | Bandyopadhyay B., Kamal S., Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, 317, pp. 1-54, (2015) | |
dc.relation.references | Wang J., Shao C., Chen Y.Q., Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance, Mechatronics, 53, pp. 8-19, (2018) | |
dc.relation.references | Wang Y., Chen J., Yan F., Zhu K., Chen B., Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators, ISA Trans, 86, pp. 163-180, (2019) | |
dc.relation.references | Ma Z., Ma H., Adaptive Fuzzy Backstepping Dynamic Surface Control of Strict-Feedback Fractional-Order Uncertain Nonlinear Systems, IEEE Trans. Fuzzy Syst, 28, pp. 122-133, (2020) | |
dc.relation.references | Song S., Zhang B., Xia J., Zhang Z., Adaptive Backstepping Hybrid Fuzzy Sliding Mode Control for Uncertain Fractional-Order Nonlinear Systems Based on Finite-Time Scheme, IEEE Trans. Syst. Man Cybern. Syst, 50, pp. 1559-1569, (2020) | |
dc.relation.references | Fanaee N., Adaptive finite time high-order sliding mode observer for non-linear fractional order systems with unknown input, Asian J. Control, 23, pp. 1083-1096, (2021) | |
dc.relation.references | Fang Y., Li S., Fei J., Adaptive Intelligent High-Order Sliding Mode Fractional Order Control for Harmonic Suppression, Fractal Fract, 6, (2022) | |
dc.relation.references | Deniz F.N., Alagoz B.B., Tan N., Koseoglu M., Revisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analyses, Annu. Rev. Control, 49, pp. 239-257, (2020) | |
dc.relation.references | Mehta U., Bingi K., Saxena S., Applied Fractional Calculus in Identification and Control, (2022) | |
dc.relation.references | Gude J.J., Di Teodoro A., Herrera M., Rincon L., Camacho O., Sliding Mode Control Design Using a Generalized Reduced-Order Fractional Model for Chemical Processes, Results Eng, 24, (2024) | |
dc.relation.references | Akindele N., Taiwo R., Sarvari H., Oluleye B.I., Awodele I.A., Olaniran T.O., A state-of-the-art analysis of virtual reality applications in construction health and safety, Results Eng, 23, (2024) | |
dc.relation.references | Lytridis C., Kaburlasos V.G., Pachidis T., Manios M., Vrochidou E., Kalampokas T., Chatzistamatis S., An Overview of Cooperative Robotics in Agriculture, Agronomy, 11, (2021) | |
dc.relation.references | Peng Y., Lei Y., Tekler Z.D., Antanuri N., Lau S.K., Chong A., Hybrid system controls of natural ventilation and HVAC in mixed-mode buildings: A comprehensive review, Energy Build, 276, (2022) | |
dc.relation.references | Marin-Rodriguez N.J., Gonzalez-Ruiz J.D., Botero Botero S., Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis, Sustainability, 14, (2022) | |
dc.relation.references | Kumari A., Singh M.P., A journey of social sustainability in organization during MDG & SDG period: A bibliometric analysis, Socio-Econ. Plan. Sci, 88, (2023) | |
dc.relation.references | Tharayil J.M., Chinnaiyan P., John D.M., Kishore M.S., Environmental sustainability of FO membrane separation applications—Bibliometric analysis and state-of-the-art review, Results Eng, 21, (2024) | |
dc.relation.references | Aria M., Cuccurullo C., Bibliometrix: An R-tool for comprehensive science mapping analysis, J. Inf, 11, pp. 959-975, (2017) | |
dc.relation.references | Yamaguchi N.U., Bernardino E.G., Ferreira M.E.C., de Lima B.P., Pascotini M.R., Yamaguchi M.U., Sustainable development goals: A bibliometric analysis of literature reviews, Environ. Sci. Pollut. Res, 30, pp. 5502-5515, (2023) | |
dc.relation.references | Yepes S., Martinez M., Restrepo S., Palacio J., Rios A., Zartha J., Technological Surveillance and Technology Life Cycle Analysis—Application in Food Drying, Int. J. Appl. Eng. Res, 13, pp. 7273-7288, (2018) | |
dc.relation.references | Callon M., Courtial J.P., Laville F., Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry, Scientometrics, 22, pp. 155-205, (1991) | |
dc.relation.references | Yu J., Munoz-Justicia J., A Bibliometric Overview of Twitter-Related Studies Indexed in Web of Science, Future Internet, 12, (2020) | |
dc.relation.references | Li T., Yang D., Xie X., Prioritized experience replay based reinforcement learning for adaptive tracking control of autonomous underwater vehicle, Appl. Math. Comput, 443, (2023) | |
dc.relation.references | Onen U., Model-Free Controller Design for Nonlinear Underactuated Systems With Uncertainties and Disturbances by Using Extended State Observer Based Chattering-Free Sliding Mode Control, IEEE Access, 11, pp. 2875-2885, (2023) | |
dc.relation.references | Oh K., Seo J., Development of a Sliding-Mode-Control-Based Path-Tracking Algorithm with Model-Free Adaptive Feedback Action for Autonomous Vehicles, Sensors, 23, (2022) | |
dc.relation.references | Zhong Y., Yu C., Wang R., Liu C., Lian L., Adaptive depth tracking of underwater vehicles considering actuator saturation: Theory, simulation and experiment, Ocean. Eng, 265, (2022) | |
dc.relation.references | Yuan D., Wang Y., Data Driven Model-Free Adaptive Control Method for Quadrotor Trajectory Tracking Based on Improved Sliding Mode Algorithm, J. Shanghai Jiaotong Univ. (Sci.), 27, pp. 790-798, (2022) | |
dc.relation.references | Guo X., Niu P., Zhao D., Li X., Wang S., Chang A., Model-free Controls of Manipulator Quadrotor UAV Under Grasping Operation and Environmental Disturbance, Int. J. Control. Autom. Syst, 20, pp. 3689-3705, (2022) | |
dc.relation.references | Weng Y., Wang N., SMC-based model-free tracking control of unknown autonomous surface vehicles, ISA Trans, 130, pp. 684-691, (2022) | |
dc.relation.references | Jiang Y., Meng H., Chen G., Yang C., Xu X., Zhang L., Xu H., Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle, Energy, 254, (2022) | |
dc.relation.references | Lv X., Zhang G., Wang G., Zhu M., Shi Z., Bai Z., Alexandrov I.V., Numerical Analyses and a Nonlinear Composite Controller for a Real-Time Ground Aerodynamic Heating Simulation of a Hypersonic Flying Object, Mathematics, 10, (2022) | |
dc.relation.references | Zhang-qi F., Hao-bin J., Qi-zhi W., Yang-ke H., Abiodun Oluwaleke O., Model-free adaptive sliding mode control for intelligent vehicle longitudinal dynamics, Adv. Mech. Eng, 14, (2022) | |
dc.relation.references | Xu K.T., Ge M.F., Liang C.D., Ding T.F., Zhan X.S., Predefined-time time-varying formation control of networked autonomous surface vehicles: A velocity- and model-free approach, Nonlinear Dyn, 108, pp. 3605-3622, (2022) | |
dc.relation.references | Weng Y., Wang N., Finite-time observer-based model-free time-varying sliding-mode control of disturbed surface vessels, Ocean. Eng, 251, (2022) | |
dc.relation.references | Zhang Y., Wang X., Wang S., Tian X., Three-dimensional formation–containment control of underactuated AUVs with heterogeneous uncertain dynamics and system constraints, Ocean. Eng, 238, (2021) | |
dc.relation.references | Weng Y., Wang N., Data-driven robust backstepping control of unmanned surface vehicles, Int. J. Robust Nonlinear Control, 30, pp. 3624-3638, (2020) | |
dc.relation.references | Weng Y., Wang N., Guedes Soares C., Data-driven sideslip observer-based adaptive sliding-mode path-following control of underactuated marine vessels, Ocean. Eng, 197, (2020) | |
dc.relation.references | Patel S., Sarabakha A., Kircali D., Kayacan E., An Intelligent Hybrid Artificial Neural Network-Based Approach for Control of Aerial Robots, J. Intell. Robot. Syst, 97, pp. 387-398, (2020) | |
dc.relation.references | Gonzalez-Garcia J., Narcizo-Nuci N.A., Gomez-Espinosa A., Garcia-Valdovinos L.G., Salgado-Jimenez T., Finite-Time Controller for Coordinated Navigation of Unmanned Underwater Vehicles in a Collaborative Manipulation Task, Sensors, 23, (2022) | |
dc.relation.references | Gonzalez-Garcia J., Gomez-Espinosa A., Garcia-Valdovinos L.G., Salgado-Jimenez T., Cuan-Urquizo E., Cabello J.A.E., Model-Free High-Order Sliding Mode Controller for Station-Keeping of an Autonomous Underwater Vehicle in Manipulation Task: Simulations and Experimental Validation, Sensors, 22, (2022) | |
dc.relation.references | Peng F., Wen H., Zhang C., Xu B., Li J., Su H., Adaptive Robust Force Position Control for Flexible Active Prosthetic Knee Using Gait Trajectory, Appl. Sci, 10, (2020) | |
dc.relation.references | Lv X., Zhang G., Zhu M., Shi Z., Bai Z., Alexandrov I.V., Aerodynamic Heating Ground Simulation of Hypersonic Vehicles Based on Model-Free Control Using Super Twisting Nonlinear Fractional Order Sliding Mode, Mathematics, 10, (2022) | |
dc.relation.references | Lv X., Zhang G., Zhu M., Ouyang H., Shi Z., Bai Z., Alexandrov I.V., Adaptive Neural Network Global Nonsingular Fast Terminal Sliding Mode Control for a Real Time Ground Simulation of Aerodynamic Heating Produced by Hypersonic Vehicles, Energies, 15, (2022) | |
dc.relation.references | Ye D., Xiao Y., Sun Z., Xiao B., Neural Network Based Finite-Time Attitude Tracking Control of Spacecraft With Angular Velocity Sensor Failures and Actuator Saturation, IEEE Trans. Ind. Electron, 69, pp. 4129-4136, (2022) | |
dc.relation.references | Xu D., Zhang W., Shi P., Jiang B., Model-Free Cooperative Adaptive Sliding-Mode-Constrained-Control for Multiple Linear Induction Traction Systems, IEEE Trans. Cybern, 50, pp. 4076-4086, (2020) | |
dc.relation.references | Zhang R., Hou S., Sun H., Li Z., Tang X., An adaptive sliding mode control algorithm for flexibly supported Stewart mechanism, J. Braz. Soc. Mech. Sci. Eng, 44, (2022) | |
dc.relation.references | Baek S., Baek J., Kwon W., Han S., An Adaptive Model Uncertainty Estimator Using Delayed State-Based Model-Free Control and Its Application to Robot Manipulators, IEEE/ASME Trans. Mechatronics, 27, pp. 4573-4584, (2022) | |
dc.relation.references | Azad F.A., Rad S.A., Arashpour M., Back-stepping control of delta parallel robots with smart dynamic model selection for construction applications, Autom. Constr, 137, (2022) | |
dc.relation.references | Ghafarian M., Shirinzadeh B., Al-Jodah A., Das T.K., Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator, IEEE Robot. Autom. Lett, 5, pp. 4313-4320, (2020) | |
dc.relation.references | Garcia-Rodriguez R., Parra-Vega V., Ramos-Velasco L.E., Dominguez-Ramirez O.A., Neuro-controller for antagonistic bi-articular muscle actuation in robotic arms based on terminal attractors, Trans. Inst. Meas. Control, 42, pp. 2031-2043, (2020) | |
dc.relation.references | Lee J., Chang P.H., Yu B., Seo K.H., Jin M., An Effective Adaptive Gain Dynamics for Time-Delay Control of Robot Manipulators, IEEE Access, 8, pp. 192229-192238, (2020) | |
dc.relation.references | Elleuch D., Damak T., Robust Model-Free Control for Robot Manipulator under Actuator Dynamics, Math. Probl. Eng, 2020, pp. 1-11, (2020) | |
dc.relation.references | Ding L., Yao Y., Ma R., Observer-Based Control for a Cable-Driven Aerial Manipulator under Lumped Disturbances, Comput. Model. Eng. Sci, 135, pp. 1539-1558, (2023) | |
dc.relation.references | Wang Y., Yan F., Chen J., Ju F., Chen B., A New Adaptive Time-Delay Control Scheme for Cable-Driven Manipulators, IEEE Trans. Ind. Inform, 15, pp. 3469-3481, (2019) | |
dc.relation.references | Zeng H., Lyu Y., Qi J., Zou S., Qin T., Qin W., Adaptive finite-time model estimation and control for manipulator visual servoing using sliding mode control and neural networks, Adv. Robot, 37, pp. 576-590, (2023) | |
dc.relation.references | Chen Z., Wang X., Cheng Y., Model free based finite time fault-tolerant control of robot manipulators subject to disturbances and input saturation, Int. J. Robust Nonlinear Control, 32, pp. 5281-5303, (2022) | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |