Show simple item record

dc.contributor.authorMosqueda-Prado J.B
dc.contributor.authorPinillos-Bernal E
dc.contributor.authorOspina-Montoya V
dc.contributor.authorVásquez-Rendón M
dc.contributor.authorForgionny A
dc.contributor.authorAcelas N.
dc.date.accessioned2025-04-28T22:10:42Z
dc.date.available2025-04-28T22:10:42Z
dc.date.created2024
dc.identifier.issn22968016
dc.identifier.urihttp://hdl.handle.net/11407/8900
dc.descriptionQuantum carbon dots (QCDs) were efficiently synthesized from post-extraction residues generated during nopal fabric production using a hydrothermal treatment. These QCDs were applied to nopal fabrics, enhancing their UV solar radiation absorption. The synthesized QCDs exhibited fluorescence emissions in the 200–300 nm range. An eco-friendly dispersion was created by incorporating QCDs into TiO2 for use in smart textiles, which underlines our commitment to maintaining a sustainable process. Bright and fluorescent patterns were successfully applied to commercial and nopal fabrics using a spray printing technique. Additionally, the QCDs demonstrated pH-sensitive color changes, paving the way for practical applications. This work represents an initial step towards a circular economy by utilizing residues from nopal fabric production to synthesize quantum dots, which may be employed in smart textiles applications with UV absorption capabilities. Copyright © 2024 Mosqueda-Prado, Pinillos-Bernal, Ospina-Montoya, Vásquez-Rendón, Forgionny and Acelas.
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85208652277&doi=10.3389%2ffmats.2024.1478418&partnerID=40&md5=0650ba49adc663a4ff1790c32c6cde1b
dc.sourceFrontiers in Materials
dc.sourceFront. Mater.
dc.sourceScopus
dc.subjectFluorescence sensing
dc.subjectNopal
dc.subjectQuantum dots
dc.subjectSmart textiles
dc.subjectTitanium oxide
dc.subjectWaste
dc.subjectBioremediation
dc.subjectCarbon Quantum Dots
dc.subjectGraphene quantum dots
dc.subjectNanorings
dc.subjectpH sensors
dc.subjectSmart textiles
dc.subjectTextile printing
dc.subjectTitanium dioxide
dc.subjectCarbon dots
dc.subjectExtraction residue
dc.subjectFluorescence sensing
dc.subjectHydrothermal treatments
dc.subjectNopal
dc.subjectQuantum dot
dc.subjectSynthesised
dc.subjectTextile applications
dc.subjectTitania oxides
dc.subjectValorisation
dc.subjectNanocrystals
dc.subjectFluorescence sensing
dc.subjectNopal
dc.subjectQuantum dots
dc.subjectSmart textiles
dc.subjectTitanium oxide
dc.subjectWaste
dc.titleValorization of nopal wastes to produce quantum dots: optimizing synthesis and exploring in smart textile applications
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo revisado por pares
dc.identifier.doi10.3389/fmats.2024.1478418
dc.relation.citationvolume11
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.facultyFacultad de Diseño
dc.affiliationMosqueda-Prado, J.B., Ingeniería en Nanotecnología, Universidad de la Ciénega del Estado de Michoacán de Ocampo, Sahuayo de Morelos, Mexico
dc.affiliationPinillos-Bernal, E., Grupo de Investigación en Diseño – TRIADA, Facultad de Diseño, Universidad de Medellín, Medellín, Colombia
dc.affiliationOspina-Montoya, V., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationVásquez-Rendón, M., Grupo de Investigación en Diseño – TRIADA, Facultad de Diseño, Universidad de Medellín, Medellín, Colombia
dc.affiliationForgionny, A., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAfroj, S., Karim, N., Wang, Z., Tan, S., He, P., Holwill, M., Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique (2019) ACS Nano, 13, pp. 3847-3857
dc.relation.referencesAgarwal, K., Rai, H., Mondal, S., Quantum dots: an overview of synthesis, properties, and applications (2023) Mater Res. Express, 10, p. 062001
dc.relation.referencesAkash, K., John P Paul Winston, A., Mohamed, K.M., Sagayaraj, P., Madhavan, J., Rajesh Kumar, S., Efficacy of anti-inflammatory and antioxidant activities of carbon quantum dots synthesized from sugarcane bagasse and pith (2024) Inorg. Chem. Commun, 169, p. 113046
dc.relation.referencesAlgadi, H., Albargi, H., Umar, A., Shkir, M., Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector (2021) Adv. Compos Hybrid. Mater, 4, pp. 1354-1366
dc.relation.referencesAlgethami, K., Saidi, I., Ben Jannet, H., Khairy, M., Abdulkhair, B.Y., Al-Ghamdi, Y.O., Chitosan-CdS quantum dots biohybrid for highly selective interaction with copper(II) ions (2022) ACS Omega, 7, pp. 21014-21024
dc.relation.referencesArvapalli, D.M., Sheardy, A.T., Alapati, K.C., Wei, J., High quantum yield fluorescent carbon nanodots for detection of Fe (III) ions and electrochemical study of quenching mechanism (2020) Talanta, 209, p. 120538
dc.relation.referencesAshraf, H., Karahan, B.D., Biowaste valorization into valuable nanomaterials: synthesis of green carbon nanodots and anode material for lithium-ion batteries from watermelon seeds (2024) Mater Res. Bull, 169, p. 112492
dc.relation.referencesBuiles Vélez, A.E., Builes Escobar, N., Rossi, E., Mattram, A., Stocker, J., Rognoli, V., Education for Sustainability approaching SDG 4 and target 4.7 (2022) Editor. Univ. Pontif. Boliv
dc.relation.referencesChang, C.-Y., Venkatesan, S., Herman, A., Wang, C.-L., Teng, H., Lee, Y.-L., Carbon quantum dots with high quantum yield prepared by heterogeneous nucleation processes (2023) J. Alloys Compd, 938, p. 168654
dc.relation.referencesChauhan, D.S., Quraishi, M.A., Verma, C., Carbon nanodots: recent advances in synthesis and applications (2022) Carbon Lett, 32, pp. 1603-1629
dc.relation.referencesDhamodharan, D., Byun, H.S., Varsha Shree, M., Veeman, D., Natrayan, L., Stalin, B., Carbon nanodots: synthesis, mechanisms for bio-electrical applications (2022) J. Industrial Eng. Chem, 110, pp. 68-83
dc.relation.referencesEhtesabi, H., Kalji, S.O., Carbon nanomaterials for sweat-based sensors: a review (2024) Microchim. Acta, 191, p. 77
dc.relation.referencesEzati, P., Rhim, J.W., Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion (2022) Colloids Surf. B Biointerfaces, 219, p. 112804
dc.relation.referencesFelipe, B.H.S., Cabral, R.L.B., Ladchumananandasivam, R., Zille, A., Kim, S., Fechine, P.B.A., Nanocoating on cotton fabric with nitrogen-doped graphene quantum dots/titanium dioxide/PVA: an erythemal UV protection and photoluminescent finishing (2022) J. Mater. Res. Technol, 18, pp. 2435-2450
dc.relation.referencesFranco, C.A., Candela, C.H., Gallego, J., Marin, J., Patiño, L.E., Ospina, N., Easy and rapid synthesis of carbon quantum dots from mortiño (vaccinium meridionale swartz) extract for use as green tracers in the oil and gas industry: lab-to-field trial development in Colombia (2020) Ind. Eng. Chem. Res, 59, pp. 11359-11369
dc.relation.referencesGoswami, J., Barman, H., Hazarika, P., Manna, P., Devi, A., Saikia, L., Biomass-derived phosphorous-doped carbon quantum dots (P-CQD): an excellent biocompatible material for in-vitro cell imaging (2024) Inorg. Chem. Commun, 162, p. 112276
dc.relation.referencesHsieh, C., Wu, F.L., Yang, S.Y., Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles (2008) Surf. Coat. Technol, 202, pp. 6103-6108
dc.relation.referencesJia, L.-W., Zhang, X., Versatile red-emissive carbon dots for smart textiles and fluorescence sensing (2023) ACS Appl. Nano Mater, 6, pp. 1379-1385
dc.relation.referencesJin, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation (2023) J. Alloys Compd, 932, p. 167627
dc.relation.referencesLagarón, J.M., López-Rubio, A., José Fabra, M., Bio-based packaging (2016) J. Appl. Polym. Sci, 133
dc.relation.referencesLi, Z., Chen, R., Zhang, L., Utilization of chitosan biopolymer to enhance fly ash-based geopolymer (2013) J. Mater. Sci, 48, pp. 7986-7993
dc.relation.referencesLing, Y., Ji, Z., Tian, F., Peng, C., Wu, B., Liu, X., Surface relaxation determine the band bending and special optical properties of carbon nanodots (2022) Surfaces Interfaces, 34, p. 102338
dc.relation.referencesLysenko, V., Kuznietsova, H., Dziubenko, N., Byelinska, I., Zaderko, A., Lysenko, T., Application of carbon dots as antibacterial agents: a mini review (2024) Bionanoscience, 14, pp. 1819-1831
dc.relation.referencesLyu, J.S., Han, J., Fabrication of bio-inspired carbon nanodot-corn starch nanocomposite films via extrusion process for sustainable active food packaging applications (2024) Carbohydr. Polym, 343, p. 122502
dc.relation.referencesMahmood, A., Shi, G., Wang, Z., Rao, Z., Xiao, W., Xie, X., Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: an experimental and DFT studies of adsorption and electronic structure of the interface (2021) J. Hazard Mater, 401, p. 123402
dc.relation.referencesMaiti, B., Wang, K., Bunge, S.D., Twieg, R.J., Dunietz, B.D., Enhancing charge mobilities in self-assembled N⋯I halogen bonded organic semiconductors: a design approach based on experimental and computational perspectives (2020) Org. Electron, 79, p. 105637
dc.relation.referencesMansur, A.A.P., Mansur, H.S., Quantum dot/glycol chitosan fluorescent nanoconjugates (2015) Nanoscale Res. Lett, 10, p. 172
dc.relation.referencesMirlou-Miavagh, F., Rezvani-Moghaddam, A., Roghani-Mamaqani, H., Sundararaj, U., Comparative study of synthesis of carbon quantum dots via different routes: evaluating doping agents for enhanced photoluminescence emission (2024) Prog. Org. Coat, 191, p. 108445
dc.relation.referencesOzyurt, D., Kobaisi, M., Hocking, R.K., Fox, B., Properties, synthesis, and applications of carbon dots: a review (2023) Carbon Trends, 12, p. 100276
dc.relation.referencesPerotti, G.F., Tronto, J., Bizeto, M.A., Izumi, C.M.S., Temperini, M.L.A., Lugão, A.B., Biopolymer-clay nanocomposites: cassava starch and synthetic clay cast films (2014) J. Braz Chem. Soc, 25, pp. 320-330
dc.relation.referencesPombo Barros, V.G.V., Puntos cuánticos: nueva aportación de la nanotecnología en investigación y medicina (2011) Rev. Complut. ciencias veterinarias, 5, pp. 69-102
dc.relation.referencesQuang, N.K., Hieu, N.N., Bao, V.V.Q., Phuoc, V.T., Ngoc, L.X.D., Doc, L.Q., Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging (2022) Xinxing Tan. Cailiao/New Carbon Mater, 37, pp. 595-602
dc.relation.referencesRasal, A.S., Korupalli, C., Getachew, G., Chou, T.H., Lee, T.Y., Ghule, A.V., Towards green, efficient and stable quantum-dot-sensitized solar cells through nature-inspired biopolymer modified electrolyte (2021) Electrochim Acta, 391, p. 138972
dc.relation.referencesRivera-Álvarez, A., Quesada-Ramírez, A., Vega-Baudrit, J., Paniagua, S.A., Rica, C., Rodrigo Facio, S., (2021) Síntesis, propiedades y aplicaciones de puntos cuánticos a base de carbono
dc.relation.referencesRomán, L.E., Huachani, J., Uribe, C., Solís, J., Gómez, M., Costa, S., Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ (2019) Appl. Surf. Sci, 469, pp. 204-212
dc.relation.referencesRosales, S., Zapata, K., Cortes, F.B., Rojano, B., Diaz, C., Cortes, C., Simultaneous detection of carbon quantum dots as tracers for interwell connectivity evaluation in a pattern with two injection wells (2024) Nanomaterials, 14, p. 789
dc.relation.referencesSharma, S., Chowdhury, P., Tunable dual photoluminescence from synthesized urea-based carbon quantum dots: a DFT based simulation on structural insights (2024) Opt. Mater (Amst), 153, p. 115617
dc.relation.referencesSousa, H.B.A., Martins, C.S.M., Prior, J.A.V., You don’t learn that in school: an updated practical guide to carbon quantum dots (2021) Nanomaterials, 11, pp. 611-688
dc.relation.referencesSun, J., Yan, K., Zhang, P., Pan, A., Xiong, W., Chen, X., Fabrication of methylated carbon quantum dot-based fluorescent films for highly sensitive and stable temperature probes (2024) Colloids Surf. A Physicochem Eng. Asp, 695, p. 134286
dc.relation.referencesTian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation (2015) Nano Energy, 11, pp. 419-427
dc.relation.referencesUdayakumar, G.P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries (2021) J. Environ. Chem. Eng, 9, p. 105322
dc.relation.referencesVenkateshaiah, A., Padil, V.V.T., Nagalakshmaiah, M., Waclawek, S., Černík, M., Varma, R.S., Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives (2020) Polym. (Basel), 12, p. 512
dc.relation.referencesWang, R., Zhang, S., Zhang, J., Wang, J., Bian, H., Jin, L., State-of-the-art of lignin-derived carbon nanodots: preparation, properties, and applications (2024) Int. J. Biol. Macromol, 273, p. 132897
dc.relation.referencesYang, X., Lotfy, V.F., Basta, A.H., Liu, H., Fu, S., Carbon quantum dots derived from rice straw doped with N and S and its nanocomposites with hydroxypropyl cellulose nanocomposite (2024) Int. J. Biol. Macromol, 278, p. 134925
dc.relation.referencesZamora-Valencia, C.A., Reyes-Valderrama, M.I., Salado-Lesa, D.E., Rodriguez-Lugo, V., Síntesis hidrotermal de puntos cuánticos de carbono PEGilados (2023) Pädi Bol. Científico Ciencias Básicas Ing. del ICBI, 11, pp. 35-43
dc.relation.referencesZhao, H., Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators (2019) J. Lumin, 211, pp. 150-156
dc.relation.referencesZhao, L., Zhang, P., Li, L., Li, N., Tuerhong, R., Su, X., Revealing the potential of quantum dot nanomaterials in photocatalytic applications (2024) Chemosphere, 361, p. 142547
dc.relation.referencesZhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging (2013) Angew. Chem. - Int. Ed, 52, pp. 3953-3957
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record