dc.contributor.author | Mosqueda-Prado J.B | |
dc.contributor.author | Pinillos-Bernal E | |
dc.contributor.author | Ospina-Montoya V | |
dc.contributor.author | Vásquez-Rendón M | |
dc.contributor.author | Forgionny A | |
dc.contributor.author | Acelas N. | |
dc.date.accessioned | 2025-04-28T22:10:42Z | |
dc.date.available | 2025-04-28T22:10:42Z | |
dc.date.created | 2024 | |
dc.identifier.issn | 22968016 | |
dc.identifier.uri | http://hdl.handle.net/11407/8900 | |
dc.description | Quantum carbon dots (QCDs) were efficiently synthesized from post-extraction residues generated during nopal fabric production using a hydrothermal treatment. These QCDs were applied to nopal fabrics, enhancing their UV solar radiation absorption. The synthesized QCDs exhibited fluorescence emissions in the 200–300 nm range. An eco-friendly dispersion was created by incorporating QCDs into TiO2 for use in smart textiles, which underlines our commitment to maintaining a sustainable process. Bright and fluorescent patterns were successfully applied to commercial and nopal fabrics using a spray printing technique. Additionally, the QCDs demonstrated pH-sensitive color changes, paving the way for practical applications. This work represents an initial step towards a circular economy by utilizing residues from nopal fabric production to synthesize quantum dots, which may be employed in smart textiles applications with UV absorption capabilities. Copyright © 2024 Mosqueda-Prado, Pinillos-Bernal, Ospina-Montoya, Vásquez-Rendón, Forgionny and Acelas. | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media SA | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208652277&doi=10.3389%2ffmats.2024.1478418&partnerID=40&md5=0650ba49adc663a4ff1790c32c6cde1b | |
dc.source | Frontiers in Materials | |
dc.source | Front. Mater. | |
dc.source | Scopus | |
dc.subject | Fluorescence sensing | |
dc.subject | Nopal | |
dc.subject | Quantum dots | |
dc.subject | Smart textiles | |
dc.subject | Titanium oxide | |
dc.subject | Waste | |
dc.subject | Bioremediation | |
dc.subject | Carbon Quantum Dots | |
dc.subject | Graphene quantum dots | |
dc.subject | Nanorings | |
dc.subject | pH sensors | |
dc.subject | Smart textiles | |
dc.subject | Textile printing | |
dc.subject | Titanium dioxide | |
dc.subject | Carbon dots | |
dc.subject | Extraction residue | |
dc.subject | Fluorescence sensing | |
dc.subject | Hydrothermal treatments | |
dc.subject | Nopal | |
dc.subject | Quantum dot | |
dc.subject | Synthesised | |
dc.subject | Textile applications | |
dc.subject | Titania oxides | |
dc.subject | Valorisation | |
dc.subject | Nanocrystals | |
dc.subject | Fluorescence sensing | |
dc.subject | Nopal | |
dc.subject | Quantum dots | |
dc.subject | Smart textiles | |
dc.subject | Titanium oxide | |
dc.subject | Waste | |
dc.title | Valorization of nopal wastes to produce quantum dots: optimizing synthesis and exploring in smart textile applications | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo revisado por pares | |
dc.identifier.doi | 10.3389/fmats.2024.1478418 | |
dc.relation.citationvolume | 11 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.publisher.faculty | Facultad de Diseño | |
dc.affiliation | Mosqueda-Prado, J.B., Ingeniería en Nanotecnología, Universidad de la Ciénega del Estado de Michoacán de Ocampo, Sahuayo de Morelos, Mexico | |
dc.affiliation | Pinillos-Bernal, E., Grupo de Investigación en Diseño – TRIADA, Facultad de Diseño, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Ospina-Montoya, V., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Vásquez-Rendón, M., Grupo de Investigación en Diseño – TRIADA, Facultad de Diseño, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Forgionny, A., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Acelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Afroj, S., Karim, N., Wang, Z., Tan, S., He, P., Holwill, M., Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique (2019) ACS Nano, 13, pp. 3847-3857 | |
dc.relation.references | Agarwal, K., Rai, H., Mondal, S., Quantum dots: an overview of synthesis, properties, and applications (2023) Mater Res. Express, 10, p. 062001 | |
dc.relation.references | Akash, K., John P Paul Winston, A., Mohamed, K.M., Sagayaraj, P., Madhavan, J., Rajesh Kumar, S., Efficacy of anti-inflammatory and antioxidant activities of carbon quantum dots synthesized from sugarcane bagasse and pith (2024) Inorg. Chem. Commun, 169, p. 113046 | |
dc.relation.references | Algadi, H., Albargi, H., Umar, A., Shkir, M., Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector (2021) Adv. Compos Hybrid. Mater, 4, pp. 1354-1366 | |
dc.relation.references | Algethami, K., Saidi, I., Ben Jannet, H., Khairy, M., Abdulkhair, B.Y., Al-Ghamdi, Y.O., Chitosan-CdS quantum dots biohybrid for highly selective interaction with copper(II) ions (2022) ACS Omega, 7, pp. 21014-21024 | |
dc.relation.references | Arvapalli, D.M., Sheardy, A.T., Alapati, K.C., Wei, J., High quantum yield fluorescent carbon nanodots for detection of Fe (III) ions and electrochemical study of quenching mechanism (2020) Talanta, 209, p. 120538 | |
dc.relation.references | Ashraf, H., Karahan, B.D., Biowaste valorization into valuable nanomaterials: synthesis of green carbon nanodots and anode material for lithium-ion batteries from watermelon seeds (2024) Mater Res. Bull, 169, p. 112492 | |
dc.relation.references | Builes Vélez, A.E., Builes Escobar, N., Rossi, E., Mattram, A., Stocker, J., Rognoli, V., Education for Sustainability approaching SDG 4 and target 4.7 (2022) Editor. Univ. Pontif. Boliv | |
dc.relation.references | Chang, C.-Y., Venkatesan, S., Herman, A., Wang, C.-L., Teng, H., Lee, Y.-L., Carbon quantum dots with high quantum yield prepared by heterogeneous nucleation processes (2023) J. Alloys Compd, 938, p. 168654 | |
dc.relation.references | Chauhan, D.S., Quraishi, M.A., Verma, C., Carbon nanodots: recent advances in synthesis and applications (2022) Carbon Lett, 32, pp. 1603-1629 | |
dc.relation.references | Dhamodharan, D., Byun, H.S., Varsha Shree, M., Veeman, D., Natrayan, L., Stalin, B., Carbon nanodots: synthesis, mechanisms for bio-electrical applications (2022) J. Industrial Eng. Chem, 110, pp. 68-83 | |
dc.relation.references | Ehtesabi, H., Kalji, S.O., Carbon nanomaterials for sweat-based sensors: a review (2024) Microchim. Acta, 191, p. 77 | |
dc.relation.references | Ezati, P., Rhim, J.W., Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion (2022) Colloids Surf. B Biointerfaces, 219, p. 112804 | |
dc.relation.references | Felipe, B.H.S., Cabral, R.L.B., Ladchumananandasivam, R., Zille, A., Kim, S., Fechine, P.B.A., Nanocoating on cotton fabric with nitrogen-doped graphene quantum dots/titanium dioxide/PVA: an erythemal UV protection and photoluminescent finishing (2022) J. Mater. Res. Technol, 18, pp. 2435-2450 | |
dc.relation.references | Franco, C.A., Candela, C.H., Gallego, J., Marin, J., Patiño, L.E., Ospina, N., Easy and rapid synthesis of carbon quantum dots from mortiño (vaccinium meridionale swartz) extract for use as green tracers in the oil and gas industry: lab-to-field trial development in Colombia (2020) Ind. Eng. Chem. Res, 59, pp. 11359-11369 | |
dc.relation.references | Goswami, J., Barman, H., Hazarika, P., Manna, P., Devi, A., Saikia, L., Biomass-derived phosphorous-doped carbon quantum dots (P-CQD): an excellent biocompatible material for in-vitro cell imaging (2024) Inorg. Chem. Commun, 162, p. 112276 | |
dc.relation.references | Hsieh, C., Wu, F.L., Yang, S.Y., Superhydrophobicity from composite nano/microstructures: carbon fabrics coated with silica nanoparticles (2008) Surf. Coat. Technol, 202, pp. 6103-6108 | |
dc.relation.references | Jia, L.-W., Zhang, X., Versatile red-emissive carbon dots for smart textiles and fluorescence sensing (2023) ACS Appl. Nano Mater, 6, pp. 1379-1385 | |
dc.relation.references | Jin, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation (2023) J. Alloys Compd, 932, p. 167627 | |
dc.relation.references | Lagarón, J.M., López-Rubio, A., José Fabra, M., Bio-based packaging (2016) J. Appl. Polym. Sci, 133 | |
dc.relation.references | Li, Z., Chen, R., Zhang, L., Utilization of chitosan biopolymer to enhance fly ash-based geopolymer (2013) J. Mater. Sci, 48, pp. 7986-7993 | |
dc.relation.references | Ling, Y., Ji, Z., Tian, F., Peng, C., Wu, B., Liu, X., Surface relaxation determine the band bending and special optical properties of carbon nanodots (2022) Surfaces Interfaces, 34, p. 102338 | |
dc.relation.references | Lysenko, V., Kuznietsova, H., Dziubenko, N., Byelinska, I., Zaderko, A., Lysenko, T., Application of carbon dots as antibacterial agents: a mini review (2024) Bionanoscience, 14, pp. 1819-1831 | |
dc.relation.references | Lyu, J.S., Han, J., Fabrication of bio-inspired carbon nanodot-corn starch nanocomposite films via extrusion process for sustainable active food packaging applications (2024) Carbohydr. Polym, 343, p. 122502 | |
dc.relation.references | Mahmood, A., Shi, G., Wang, Z., Rao, Z., Xiao, W., Xie, X., Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: an experimental and DFT studies of adsorption and electronic structure of the interface (2021) J. Hazard Mater, 401, p. 123402 | |
dc.relation.references | Maiti, B., Wang, K., Bunge, S.D., Twieg, R.J., Dunietz, B.D., Enhancing charge mobilities in self-assembled N⋯I halogen bonded organic semiconductors: a design approach based on experimental and computational perspectives (2020) Org. Electron, 79, p. 105637 | |
dc.relation.references | Mansur, A.A.P., Mansur, H.S., Quantum dot/glycol chitosan fluorescent nanoconjugates (2015) Nanoscale Res. Lett, 10, p. 172 | |
dc.relation.references | Mirlou-Miavagh, F., Rezvani-Moghaddam, A., Roghani-Mamaqani, H., Sundararaj, U., Comparative study of synthesis of carbon quantum dots via different routes: evaluating doping agents for enhanced photoluminescence emission (2024) Prog. Org. Coat, 191, p. 108445 | |
dc.relation.references | Ozyurt, D., Kobaisi, M., Hocking, R.K., Fox, B., Properties, synthesis, and applications of carbon dots: a review (2023) Carbon Trends, 12, p. 100276 | |
dc.relation.references | Perotti, G.F., Tronto, J., Bizeto, M.A., Izumi, C.M.S., Temperini, M.L.A., Lugão, A.B., Biopolymer-clay nanocomposites: cassava starch and synthetic clay cast films (2014) J. Braz Chem. Soc, 25, pp. 320-330 | |
dc.relation.references | Pombo Barros, V.G.V., Puntos cuánticos: nueva aportación de la nanotecnología en investigación y medicina (2011) Rev. Complut. ciencias veterinarias, 5, pp. 69-102 | |
dc.relation.references | Quang, N.K., Hieu, N.N., Bao, V.V.Q., Phuoc, V.T., Ngoc, L.X.D., Doc, L.Q., Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging (2022) Xinxing Tan. Cailiao/New Carbon Mater, 37, pp. 595-602 | |
dc.relation.references | Rasal, A.S., Korupalli, C., Getachew, G., Chou, T.H., Lee, T.Y., Ghule, A.V., Towards green, efficient and stable quantum-dot-sensitized solar cells through nature-inspired biopolymer modified electrolyte (2021) Electrochim Acta, 391, p. 138972 | |
dc.relation.references | Rivera-Álvarez, A., Quesada-Ramírez, A., Vega-Baudrit, J., Paniagua, S.A., Rica, C., Rodrigo Facio, S., (2021) Síntesis, propiedades y aplicaciones de puntos cuánticos a base de carbono | |
dc.relation.references | Román, L.E., Huachani, J., Uribe, C., Solís, J., Gómez, M., Costa, S., Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ (2019) Appl. Surf. Sci, 469, pp. 204-212 | |
dc.relation.references | Rosales, S., Zapata, K., Cortes, F.B., Rojano, B., Diaz, C., Cortes, C., Simultaneous detection of carbon quantum dots as tracers for interwell connectivity evaluation in a pattern with two injection wells (2024) Nanomaterials, 14, p. 789 | |
dc.relation.references | Sharma, S., Chowdhury, P., Tunable dual photoluminescence from synthesized urea-based carbon quantum dots: a DFT based simulation on structural insights (2024) Opt. Mater (Amst), 153, p. 115617 | |
dc.relation.references | Sousa, H.B.A., Martins, C.S.M., Prior, J.A.V., You don’t learn that in school: an updated practical guide to carbon quantum dots (2021) Nanomaterials, 11, pp. 611-688 | |
dc.relation.references | Sun, J., Yan, K., Zhang, P., Pan, A., Xiong, W., Chen, X., Fabrication of methylated carbon quantum dot-based fluorescent films for highly sensitive and stable temperature probes (2024) Colloids Surf. A Physicochem Eng. Asp, 695, p. 134286 | |
dc.relation.references | Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation (2015) Nano Energy, 11, pp. 419-427 | |
dc.relation.references | Udayakumar, G.P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries (2021) J. Environ. Chem. Eng, 9, p. 105322 | |
dc.relation.references | Venkateshaiah, A., Padil, V.V.T., Nagalakshmaiah, M., Waclawek, S., Černík, M., Varma, R.S., Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives (2020) Polym. (Basel), 12, p. 512 | |
dc.relation.references | Wang, R., Zhang, S., Zhang, J., Wang, J., Bian, H., Jin, L., State-of-the-art of lignin-derived carbon nanodots: preparation, properties, and applications (2024) Int. J. Biol. Macromol, 273, p. 132897 | |
dc.relation.references | Yang, X., Lotfy, V.F., Basta, A.H., Liu, H., Fu, S., Carbon quantum dots derived from rice straw doped with N and S and its nanocomposites with hydroxypropyl cellulose nanocomposite (2024) Int. J. Biol. Macromol, 278, p. 134925 | |
dc.relation.references | Zamora-Valencia, C.A., Reyes-Valderrama, M.I., Salado-Lesa, D.E., Rodriguez-Lugo, V., Síntesis hidrotermal de puntos cuánticos de carbono PEGilados (2023) Pädi Bol. Científico Ciencias Básicas Ing. del ICBI, 11, pp. 35-43 | |
dc.relation.references | Zhao, H., Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators (2019) J. Lumin, 211, pp. 150-156 | |
dc.relation.references | Zhao, L., Zhang, P., Li, L., Li, N., Tuerhong, R., Su, X., Revealing the potential of quantum dot nanomaterials in photocatalytic applications (2024) Chemosphere, 361, p. 142547 | |
dc.relation.references | Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging (2013) Angew. Chem. - Int. Ed, 52, pp. 3953-3957 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |