REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies

Thumbnail
Share this
Date
2025
Author
Castro-Jiménez C.C
Saldarriaga-Molina J.C
García E.F
Torres-Palma R.A
Acelas N.

Citación

       
TY - GEN T1 - Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies Y1 - 2025 UR - http://hdl.handle.net/11407/8906 PB - Public Library of Science AB - In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ER - @misc{11407_8906, author = {}, title = {Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies}, year = {2025}, abstract = {In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.}, url = {http://hdl.handle.net/11407/8906} }RT Generic T1 Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies YR 2025 LK http://hdl.handle.net/11407/8906 PB Public Library of Science AB In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
URI
http://hdl.handle.net/11407/8906
Collections
  • Indexados Scopus [2005]

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    An orbital and electron density analysis of weak interactions in ethanol-water, methanol-water, ethanol and methanol small clusters 

    Mejia S.M.; Florez E.; Mondragon F. (2012)
    A computational study of (ethanol)n-water, n = 1 to 5 heteroclusters was carried out employing the B3LYP/6-31+G(d) approach. The molecular (MO) and atomic (AO) orbital analysis and the topological study of the electron ...
  • Thumbnail

    Safe drinking water for rural communities using a low-cost household system. Effects of water matrix and field testing 

    Pichel N; Lubarsky H; Afkhami A; Baldasso V; Botero L; Salazar J; Hincapie M; Byrne J.A; Fernandez-Ibañez P. (Elsevier LtdIngeniería AmbientalFacultad de Ingenierías, 2021)
    The relationship between turbidity (T) and ultraviolet C (UVC) disinfection is still not clearly understood, as well as no attention has been paid to the contribution of natural organic matter (NOM). The present work ...
  • Thumbnail

    Gobernanza del agua y Consejos de cuenca: análisis desde los derechos humanos al agua y a la participación ambiental 

    Castro-Buitrago, Érika; Vélez-Echeverri, Juliana; Madrigal-Pérez, Mauricio (Universidad de MedellínFacultad de DerechoMedellín, 2019-10-30)
    The introduction of water governance to the Colombian ordering and the high sociological potential for conflict are the foundation of those analyses which links nature with human rights. From a dogmatic-descriptive and ...
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com