dc.contributor.author | Castro-Jiménez C.C | |
dc.contributor.author | Saldarriaga-Molina J.C | |
dc.contributor.author | García E.F | |
dc.contributor.author | Torres-Palma R.A | |
dc.contributor.author | Acelas N. | |
dc.date.accessioned | 2025-04-28T22:10:47Z | |
dc.date.available | 2025-04-28T22:10:47Z | |
dc.date.created | 2025 | |
dc.identifier.issn | 19326203 | |
dc.identifier.uri | http://hdl.handle.net/11407/8906 | |
dc.description | In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
dc.language.iso | eng | |
dc.publisher | Public Library of Science | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214872292&doi=10.1371%2fjournal.pone.0316487&partnerID=40&md5=ba502f848c3ea3868d60669ec42b3c9a | |
dc.source | PLoS ONE | |
dc.source | PLoS ONE | |
dc.source | Scopus | |
dc.subject | Azithromycin | |
dc.subject | Drinking water | |
dc.subject | Adsorption | |
dc.subject | Chemistry | |
dc.subject | Isolation and purification | |
dc.subject | Kinetics | |
dc.subject | Procedures | |
dc.subject | Sewage | |
dc.subject | Water management | |
dc.subject | Water pollutant | |
dc.subject | Adsorption | |
dc.subject | Azithromycin | |
dc.subject | Drinking Water | |
dc.subject | Kinetics | |
dc.subject | Sewage | |
dc.subject | Water Pollutants, Chemical | |
dc.subject | Water Purification | |
dc.title | Azithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo revisado por pares | |
dc.identifier.doi | 10.1371/journal.pone.0316487 | |
dc.relation.citationvolume | 20 | |
dc.relation.citationissue | 1 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Castro-Jiménez, C.C., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia | |
dc.affiliation | Saldarriaga-Molina, J.C., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia | |
dc.affiliation | García, E.F., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia | |
dc.affiliation | Torres-Palma, R.A., Facultad de Ciencias Exactas y Naturales, Instituto de Química, Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Universidad de Antioquia UdeA, Medellín, Colombia | |
dc.affiliation | Acelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | (2015) Transforming our world: the 2030 Agenda for Sustainable Development A/RES/ 70/1, , https://www.refworld.org/docid/57b6e3e44.html, Oct 21 [cited 2024 March 2]. [Accessed 26 October 2023] | |
dc.relation.references | He, L, Chen, Y, Li, Y, Sun, F, Zhao, Y, Yang, S., Adsorption of Congo red and tetracycline onto water treatment sludge biochar: characterisation, kinetic, equilibrium and thermodynamic study (2022) Water Sci Technol, 85 (6), pp. 1936-1951. , https://doi.org/10.2166/wst.2022.085, March 15 | |
dc.relation.references | PMID: 35358080 | |
dc.relation.references | Ashraf, A, Liu, G, Yousaf, B, Arif, M, Ahmed, R., Rashid, A, Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation (2022) Environmental Science and Pollution Research, 29 (22), pp. 32513-32544. , https://doi.org/10.1007/s11356-022-19119-9, PMID: 35190984 | |
dc.relation.references | Sosa-Hernández, JE., Rodas-Zuluaga, LI, López-Pacheco, IY., Melchor-Martínez, EM, Aghalari, Z, Salas, D, Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation (2021) Case studies in chemical and environmental engineering, 4, p. 100127. , https://doi.org/10.1016/j.cscee.2021.100127, PMID: 38620862 | |
dc.relation.references | Manaia, CM, Macedo, G, Fatta-Kassinos, D, Nunes, OC., Antibiotic resistance in urban aquatic environments: can it be controlled? (2016) Applied microbiology and biotechnology, 100, pp. 1543-1557. , https://doi.org/10.1007/s00253-015-7202-0, PMID: 26649735 | |
dc.relation.references | Loos, R., Marinov, D., Sanseverino, I., Napierska, D, Lettieri, T., (2018) Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, , https://doi.org/10.2760/614367, Publications Office of the European Union: Luxembourg | |
dc.relation.references | Samrot, A. V., Wilson, S., Sanjay Preeth, R. S., Prakash, P., Sathiyasree, M., Saigeetha, S., Sources of antibiotic contamination in wastewater and approaches to their removal—An overview (2023) Sustainability, 15 (16), p. 12639. , https://doi.org/10.3390/su151612639 | |
dc.relation.references | Arif, M, Liu, G, Zia ur Rehman, M, Mian, MM., Ashraf, A., Yousaf, B, Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media (2023) Environmental Science and Pollution Research, 30 (32), pp. 78279-78293. , https://doi.org/10.1007/s11356-023-27908-z, PMID: 37269518 | |
dc.relation.references | Echeverría-Esnal, D, Martin-Ontiyuelo, C, Navarrete-Rouco, ME, De-Antonio, M, Ferrández, O, Horcajada, JP, Azithromycin in the treatment of COVID-19: a review (2021) Expert review of anti-infective therapy, 19 (2), pp. 147-163. , https://doi.org/10.1080/14787210.2020.1813024, PMID: 32853038 | |
dc.relation.references | Zhao, L., Lv, Z., Lin, L., Li, X., Xu, J., Huang, S., Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater (2023) Environmental Pollution, 334, p. 122133. , https://doi.org/10.1016/j.envpol.2023.122133, PMID: 37399936 | |
dc.relation.references | Azari, A., Malakoutian, M., Yaghmaeain, K., Jaafarzadeh, N., Shariatifar, N., Mohammadi, G., Magnetic NH2-MIL-101 (Al)/Chitosan nanocomposite as a novel adsorbent for the removal of azithromycin: modeling and process optimization (2022) Scientific Reports, 12 (1), p. 18990. , https://doi.org/10.1038/s41598-022-21551-3, PMID: 36347864 | |
dc.relation.references | Singh, V., Gupta, S. P., Samanta, S. K., Water resource rejuvenation via AOP based degradation of pharmaceuticals extensively used during COVID-19 (2024) Journal of Water Process Engineering, 67, p. 106137. , https://doi.org/10.1016/j.jwpe.2024.106137 | |
dc.relation.references | Raut, S., Behera, A. K., Sahoo, S. K., Electrospun polyacrylonitrile reinforced greenly synthesized iron oxide nanocomposite fibers sheet for remediation of azithromycin from water (2024) Materials Today Communications, 40, p. 110113. , https://doi.org/10.1016/j.mtcomm.2024.110113 | |
dc.relation.references | Sabater-Liesa, L., Montemurro, N., Ginebreda, A., Barceló, D., Eichhorn, P., Pérez, S., Retrospective mass spectrometric analysis of wastewater-fed mesocosms to assess the degradation of drugs and their human metabolites (2021) Journal of Hazardous Materials, 408, p. 124984. , https://doi.org/10.1016/j.jhazmat.2020.124984, PMID: 33418519 | |
dc.relation.references | Milaković, M., Vestergaard, G., González-Plaza, J. J., Petrić, I., Šimatović, A., Senta, I., Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments (2019) Environment international, 123, pp. 501-511. , https://doi.org/10.1016/j.envint.2018.12.050, PMID: 30622075 | |
dc.relation.references | Hussain, A., Afzal, O., Altamimi, A. S., Ali, R., Application of green nanoemulsion to treat contaminated water (bulk aqueous solution) with azithromycin (2021) Environmental Science and Pollution Research, 28, pp. 61696-61706. , https://doi.org/10.1007/s11356-021-15031-w, PMID: 34184229 | |
dc.relation.references | Koch, D. E., Bhandari, A., Close, L., Hunter, R. P., Azithromycin extraction from municipal wastewater and quantitation using liquid chromatography/mass spectrometry (2005) Journal of Chromatography A, 1074 (1–2), pp. 17-22. , https://doi.org/10.1016/j.chroma.2005.03.052, PMID: 15941034 | |
dc.relation.references | Morales-Paredes, CA, Rodríguez-Díaz, JM., Boluda-Botella, N., Pharmaceutical compounds used in the COVID-19 pandemic: A review of their presence in water and treatment techniques for their elimination (2022) Science of the Total Environment, 814, p. 152691. , https://doi.org/10.1016/j.scitotenv.2021.152691, PMID: 34974020 | |
dc.relation.references | Botero-Coy, AM, Martínez-Pachón, D, Boix, C, Rincón, RJ, Castillo, N., Arias-Marín, LP, An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater (2018) Science of the Total Environment, 642, pp. 842-853. , https://doi.org/10.1016/j.scitotenv.2018.06.088, PMID: 30045524 | |
dc.relation.references | Cano, PA, Jaramillo-Baquero, M, Zúñiga-Benítez, H, Londoño, YA, Peñuela, GA., Use of simulated sunlight radiation and hydrogen peroxide in azithromycin removal from aqueous solutions: optimization & mineralization analysis (2020) Emerging Contaminants, 6, pp. 53-61. , https://doi.org/10.1016/j.emcon.2019.12.004 | |
dc.relation.references | Vrchovecká, S, Asatiani, N, Antoš, V, Wacławek, S, Hrabák, P., Study of Adsorption Efficiency of Lignite, Biochar, and Polymeric Nanofibers for Veterinary Drugs in WWTP Effluent Water (2023) Water, Air, & Soil Pollution, 234 (4), p. 268. , https://doi.org/10.1007/s11270-023-06281-0 | |
dc.relation.references | Mehrdoost, A, Yengejeh, RJ, Mohammadi, MK, Haghighatzadeh, A, Babaei, AA., Adsorption removal and photocatalytic degradation of azithromycin from aqueous solution using PAC/Fe/Ag/Zn nanocomposite (2022) Environmental Science and Pollution Research, 29 (22), pp. 33514-33527. , https://doi.org/10.1007/s11356-021-18158-y, PMID: 35029828 | |
dc.relation.references | Balarak, D, Mahvi, AH, Shahbaksh, S, Wahab, MA, Abdala, A., Adsorptive removal of azithromycin antibiotic from aqueous solution by azolla filiculoides-based activated porous carbon (2021) Nanomaterials, 11 (12), p. 3281. , https://doi.org/10.3390/nano11123281, PMID: 34947630 | |
dc.relation.references | Gholamian, S, Hamzehloo, M, Farrokhnia, A, Mahdavifar, Z., Response surface methodology optimizing the adsorptive removal of azithromycin using mesoporous silica SBA-15: mechanism, thermodynamic, equilibrium, and kinetics modeling studies (2021) Journal of Environmental Science and Health, Part A, 56 (10), pp. 1145-1164. , https://doi.org/10.1080/10934529.2021.1974267, PMID: 34558387 | |
dc.relation.references | Imanipoor, J, Mohammadi, M, Dinari, M., Evaluating the performance of L-methionine modified montmorillonite K10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water (2021) Separation and Purification Technology, 275, p. 119256. , https://doi.org/10.1016/j.seppur.2021.119256 | |
dc.relation.references | Saadi, Z, Fazaeli, R, Vafajoo, L, Naser, I, Mohammadi, G., Promotion of clinoptilolite adsorption for azithromycin antibiotic by Tween 80 and Triton X-100 surface modifiers under batch and fixed-bed processes (2021) Chemical Engineering Communications, 208 (3), pp. 328-348. , https://doi.org/10.1080/00986445.2020.1715955 | |
dc.relation.references | Davoodi, S, Dahrazma, B, Goudarzi, N, Gorji, HG., Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite (2019) Water Science and Technology, 80 (5), pp. 939-949. , https://doi.org/10.2166/wst.2019.337, PMID: 31746801 | |
dc.relation.references | De Sousa, DNR, Insa, S, Mozeto, AA, Petrovic, M, Chaves, TF, Fadini, PS., Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites (2018) Chemosphere, 205, pp. 137-146. , https://doi.org/10.1016/j.chemosphere.2018.04.085, PMID: 29689527 | |
dc.relation.references | Racar, M, Dolar, D, Karadakić, K, Čavarović, N, Glumac, N, Ašperger, D, Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants (2020) Science of the Total Environment, 722, p. 137959. , https://doi.org/10.1016/j.scitotenv.2020.137959, PMID: 32208282 | |
dc.relation.references | Rueda-Márquez, JJ, Palacios-Villarreal, C, Manzano, M., Blanco, E., del Solar, M R, Levchuk, I., Photocatalytic degradation of pharmaceutically active compounds (PhACs) in urban wastewater treatment plants effluents under controlled and natural solar irradiation using immobilized TiO2 (2020) Solar Energy, 208, pp. 480-492. , https://doi.org/10.1016/j.solener.2020.08.028 | |
dc.relation.references | Fiorentino, A, Esteban, B, Garrido-Cardenas, JA, Kowalska, K, Rizzo, L, Aguera, A, Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater (2019) Journal of Hazardous Materials, 378, p. 120737. , https://doi.org/10.1016/j.jhazmat.2019.06.014, PMID: 31202058 | |
dc.relation.references | Sayadi, MH, Sobhani, S, Shekari, H., Photocatalytic degradation of azithromycin using GO@ Fe3O4/ZnO/ SnO2 nanocomposites (2019) Journal of Cleaner Production, 232, pp. 127-136. , https://doi.org/10.1016/j.jclepro.2019.05.338 | |
dc.relation.references | Serna-Galvis, EA, Botero-Coy, AM, Martínez-Pachón, D, Moncayo-Lasso, A, Ibáñez, M, Hernández, F, Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes (2019) Water Research, 154, pp. 349-360. , https://doi.org/10.1016/j.watres.2019.01.045, PMID: 30818100 | |
dc.relation.references | Bayati, M, Ho, TL, Vu, DC, Wang, F, Rogers, E, Cuvellier, C, Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts (2021) International Journal of Hygiene and Environmental Health, 231, p. 113664. , https://doi.org/10.1016/j.ijheh.2020.113664, PMID: 33212356 | |
dc.relation.references | Tang, K, Rosborg, P, Rasmussen, ES, Hambly, A, Madsen, M, Jensen, NM, Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR) (2021) Journal of Hazardous Materials, 403, p. 123536. , https://doi.org/10.1016/j.jhazmat.2020.123536, PMID: 32823027 | |
dc.relation.references | Kiki, C, Rashid, A, Wang, Y, Li, Y, Zeng, Q, Yu, CP, Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways (2020) Journal of Hazardous Materials, 387, p. 121985. , https://doi.org/10.1016/j.jhazmat.2019.121985, PMID: 31911384 | |
dc.relation.references | Liu, PY, Chen, JR, Shao, L, Tan, J, Chen, DJ., Responses of flocculent and granular sludge in anaerobic sequencing batch reactors (ASBRs) to azithromycin wastewater and its impact on microbial communities (2018) Journal of Chemical Technology & Biotechnology, 93 (8), pp. 2341-2350. , https://doi.org/10.1002/jctb.5578 | |
dc.relation.references | Sbardella, L, Comas, J, Fenu, A, Rodriguez-Roda, I, Weemaes, M., Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater (2018) Science of the Total Environment, 636, pp. 519-529. , https://doi.org/10.1016/j.scitotenv.2018.04.214, PMID: 29715656 | |
dc.relation.references | Mojahedimotlagh, F., Nasab, E. A., Foroutan, R., Vakilabadi, D. R., Dobaradaran, S., Azamateslamtalab, E., Azithromycin decomposition from simple and complex waters by H2O2 activation over a recyclable catalyst of clay modified with nanofiltration process brine (2024) Environmental Technology & Innovation, 33, p. 103512. , https://doi.org/10.1016/j.eti.2023.103512 | |
dc.relation.references | Ramos, B.D.P, Perez, I.D, Aliprandini, P, Boina, R.F., Cu2+, Cr3+, and Ni 2+ in mono-and multi-component aqueous solution adsorbed in passion fruit peels in natura and physicochemically modified: A comparative approach (2022) Environmental Science and Pollution Research, 29, pp. 79841-79854. , https://doi.org/10.1007/s11356-021-18132-8, PMID: 34981402 | |
dc.relation.references | Sousa, ÉM, Otero, M, Rocha, LS, Gil, MV, Ferreira, P, Esteves, VI, Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes-Application in the removal of antibiotics from water (2022) Journal of Hazardous Materials, 431, p. 128556. , https://doi.org/10.1016/j.jhazmat.2022.128556, PMID: 35255334 | |
dc.relation.references | Yang, J, Ren, Y, Chen, S, Zhang, Z, Pang, H, Wang, X, Thermally activated drinking water treatment sludge as a supplementary cementitious material: Properties, pozzolanic activity and hydration characteristics (2023) Construction and Building Materials, 365, p. 130027. , https://doi.org/10.1016/j.conbuildmat.2022.130027 | |
dc.relation.references | Bensitel, N, Haboubi, K, Azar, FZ, El Hammoudani, Y, El Abdouni, A, Haboubi, C, Potential reuse of sludge from a potable water treatment plant in Al Hoceima city in northern Morocco (2023) Water Cycle, 4, pp. 154-162. , https://doi.org/10.1016/j.watcyc.2023.07.002 | |
dc.relation.references | Sharma, A, Ahammed, MM., Application of modified water treatment residuals in water and wastewater treatment: A review (2023) Heliyon, 9 (5), p. e15796. , https://doi.org/10.1016/j.heliyon.2023.e15796, PMID: 37305496 | |
dc.relation.references | Punamiya, P, Sarkar, D, Rakshit, S, Datta, R., Effectiveness of aluminum-based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium (2013) Journal of Environmental Quality, 42 (5), pp. 1449-1459. , https://doi.org/10.2134/jeq2013.03.0082, PMID: 24216422 | |
dc.relation.references | Saman, N., Subramanian, K. K., Johari, K., Mat Taib, S., Marčiulaitienė, E., Physicochemistry properties of water treatment sludge (WTS) as adsorbents for dyes and antibiotics removal (2023) Conference paper. 12th International Conference “Environmental Engineering”, , Vilnius, Lithuania | |
dc.relation.references | Brunauer, S, Emmett, PH, Teller, E., Adsorption of gases in multimolecular layers (1938) Journal of the American Chemical Society, 60 (2), pp. 309-319. , https://doi.org/10.1021/ja01269a023 | |
dc.relation.references | Guechi, EK, Hamdaoui, O., Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies (2016) Desalination and Water Treatment, 57 (22), pp. 10270-10285 | |
dc.relation.references | Martínez-Polanco, MP, Valderrama-Rincón, JA, Martínez-Rojas, AJ, Luna-Wandurraga, HJ, Díaz-Báez, MC, Bustos-López, MC, Degradation of high concentrations of azithromycin when present in a high organic content wastewater by using a continuously fed laboratory-scale UASB bioreactor (2022) Chemosphere, 287, p. 132191. , https://doi.org/10.1016/j.chemosphere.2021.132191, PMID: 34509021 | |
dc.relation.references | Kumar, V, Singh, SK, Gulati, M, Anishetty, R, Shunmugaperumal, T., Development and validation of a simple and sensitive spectrometric method for estimation of azithromycin dihydrate in tablet dosage forms: application to dissolution studies (2013) Current Pharmaceutical Analysis, 9 (3), pp. 310-317. , https://doi.org/10.2174/1573412911309030009 | |
dc.relation.references | Sultana, N, Arayne, MS, Hussain, F, Fatima, A., Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage forms (2006) Pak J Pharm Sci, 19 (2), pp. 98-103. , Apr | |
dc.relation.references | PMID: 16751118 | |
dc.relation.references | Revellame, ED, Fortela, DL, Sharp, W, Hernandez, R, Zappi, ME., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review (2020) Cleaner Engineering and Technology, 1, p. 100032. , https://doi.org/10.1016/j.clet.2020.100032 | |
dc.relation.references | Wang, J, Guo, X., Adsorption kinetic models: Physical meanings, applications, and solving methods (2020) Journal of Hazardous Materials, 390, p. 122156. , https://doi.org/10.1016/j.jhazmat.2020.122156, PMID: 32006847 | |
dc.relation.references | Freundlich, HMF., Over the adsorption in solution (1906) J. Phys. Chem, 57, pp. 1100-1107. , (385471) | |
dc.relation.references | Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc, 40 (9), pp. 1361-1403. , https://doi.org/10.1021/ja02242a004 | |
dc.relation.references | Sips, R., On the structure of a catalyst surface (1948) J. Chem. Phys, 16 (5), pp. 490-495. , https://doi.org/10.1063/1.1746922 | |
dc.relation.references | Sips, R., On the structure of a catalyst surface. II (1950) J. Chem. Phys, 18 (8), pp. 1020-1026. , https://doi.org/10.1063/1.1747848 | |
dc.relation.references | Jeppu, GP, Clement, TP., A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects (2012) Journal of Contaminant Hydrology, , https://doi.org/10.1016/j.jconhyd.2011.12.001, 129–130: 46–53, PMID: 22261349 | |
dc.relation.references | Kumar, N. S., Asif, M., Poulose, A. M., Al-Ghurabi, E. H., Alhamedi, S. S., Koduru, J. R., Date palm fiber agro-waste biomass for efficient removal of 2, 4, 6-Trichlorophenol from aqueous solution: Characterization, Kinetics, Isotherms studies and Cost-effective analysis Desalination and Water Treatment, 2024, p. 100405. , https://doi.org/10.1016/j.dwt.2024.100405 | |
dc.relation.references | Paredes-Laverde, M, Salamanca, M, Silva-Agredo, J, Manrique-Losada, L, Torres-Palma, RA., Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions (2019) Journal of Environmental Chemical Engineering, 7 (5), p. 103318. , https://doi.org/10.1016/j.jece.2019.103318 | |
dc.relation.references | Nagaraj, A, Sadasivuni, KK, Rajan, M., Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water (2017) Carbohydrate Polymers, 176, pp. 402-410. , https://doi.org/10.1016/j.carbpol.2017.08.089, PMID: 28927624 | |
dc.relation.references | Ospina-Montoya, V., Cardozo, V., Porras, J., Acelas, N., Forgionny, A., Valorization of coffee husks for the sustainable removal of pharmaceuticals from aqueous solutions (2024) H2Open Journal, 7 (3), pp. 303-317. , https://doi.org/10.2166/h2oj.2024.102 | |
dc.relation.references | Paredes-Laverde, M, Silva-Agredo, J, Torres-Palma, RA., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) Journal of Environmental Management, 213, pp. 98-108. , https://doi.org/10.1016/j.jenvman.2018.02.047, PMID: 29482094 | |
dc.relation.references | Test No. 303: Simulation Test - Aerobic Sewage Treatment - A: Activated Sludge Units | |
dc.relation.references | B: Biofilms (2001) OECD Guidelines for the Testing of Chemicals, , https://doi.org/10.1787/9789264070424-en, Section 3. Paris: OECD Publishing | |
dc.relation.references | Teixeira, SR, Santos, GTA, Souza, AE, Alessio, P, Souza, SA., Souza, NR., The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials (2011) Applied Clay Science, 53 (4), pp. 561-565. , https://doi.org/10.1016/j.clay.2011.05.004 | |
dc.relation.references | Martins, DS, Estevam, BR, Perez, ID, Américo-Pinheiro, JHP, Isique, WD, Boina, RF., Sludge from a water treatment plant as an adsorbent of endocrine disruptors (2022) Journal of Environmental Chemical Engineering, 10 (4), p. 108090 | |
dc.relation.references | Everaert, M, Bergmans, J, Broos, K, Hermans, B, Michielsen, B., Granulation and calcination of alum sludge for the development of a phosphorus adsorbent: from lab scale to pilot scale (2021) Journal of Environmental Management, 279, p. 111525. , https://doi.org/10.1016/j.jenvman.2020.111525, PMID: 33168303 | |
dc.relation.references | Shamaki, M, Adu-Amankwah, S, Black, L., Reuse of UK alum water treatment sludge in cement-based materials (2021) Construction and Building Materials, 275, p. 122047. , https://doi.org/10.1016/j.conbuildmat.2020.122047 | |
dc.relation.references | Jeon, EK, Ryu, S, Park, SW, Wang, L, Tsang, DC., Baek, K., Enhanced adsorption of arsenic onto alum sludge modified by calcination (2018) Journal of Cleaner Production, 176, pp. 54-62. , https://doi.org/10.1016/j.jclepro.2017.12.153 | |
dc.relation.references | Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, JD, Flórez, E., Silva-Agredo, J, Torres-Palma, RA., Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study (2021) Journal of Environmental Chemical Engineering, 9 (4), p. 105685. , https://doi.org/10.1016/j.jece.2021.105685 | |
dc.relation.references | Sidhu, H, D’Angelo, E, O’Connor, G., Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils (2019) Science of the Total Environment, 650, pp. 173-183. , https://doi.org/10.1016/j.scitotenv.2018.09.005, (Part 1): PMID: 30196217 | |
dc.relation.references | Nie, J, Yan, S, Lian, L, Sharma, VK, Song, W., Development of fluorescence surrogates to predict the fer-rate (VI) oxidation of pharmaceuticals in wastewater effluents (2020) Water Research, 185, p. 116256. , https://doi.org/10.1016/j.watres.2020.116256, PMID: 32768661 | |
dc.relation.references | Rodríguez-López, L, Santás-Miguel, V, Núñez-Delgado, A, Álvarez-Rodríguez, E, Pérez-Rodríguez, P, Arias-Estévez, M., Influence of pH, humic acids, and salts on the dissipation of amoxicillin and azithromycin under simulated sunlight (2022) Spanish Journal of Soil Science, 12, p. 10438. , https://doi.org/10.3389/sjss.2022.10438 | |
dc.relation.references | Ramirez, A, Ocampo, R, Giraldo, S, Padilla, E, Flórez, E, Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations (2020) Journal of Environmental Chemical Engineering, 8 (2), p. 103702. , https://doi.org/10.1016/j.jece.2020.103702 | |
dc.relation.references | Subramanyam, B, Das, A., Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means (2014) J Environ Health Sci Engineer, 12, p. 92. , https://doi.org/10.1186/2052-336X-12-92, PMID: 25018878 | |
dc.relation.references | Tran, HN, Lima, EC, Juang, RS, Bollinger, JC, Chao, HP., Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study (2021) Journal of Environmental Chemical Engineering, 9 (6), p. 106674. , https://doi.org/10.1016/j.jece.2021.10667 | |
dc.relation.references | Tran, HN, You, SJ, Hosseini-Bandegharaei, A, Chao, HP., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review (2017) Water Research, 120, pp. 88-116. , https://doi.org/10.1016/j.watres.2017.04.014, PMID: 28478298 | |
dc.relation.references | Turiel, E, Perez-Conde, C, Martin-Esteban, A., Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm (2003) Analyst, 128 (2), pp. 137-141. , https://doi.org/10.1039/b210712k, PMID: 12625553 | |
dc.relation.references | Bougrine, O., El Fellah, I., Kada, I., Rabie, F. A., Lanjri, A. F., Ammari, M., Advancing Circular Economy: A study of Drinking Water Sludge for Potential Uses (2024) Results in Engineering, p. 102426. , https://doi.org/10.1016/j.rineng.2024.102426 | |
dc.relation.references | Upoma, B. P., Yasmin, S., Ali Shaikh, M. A., Jahan, T., Haque, M. A., Moniruzzaman, M., A fast adsorption of azithromycin on waste-product-derived graphene oxide induced by H-bonding and electrostatic interactions (2022) ACS Omega, 7 (34), pp. 29655-29665. , https://doi.org/10.1021/acsomega.2c01919, PMID: 36061663 | |
dc.relation.references | Igwegbe, C. A., Oba, S. N., Aniagor, C. O., Adeniyi, A. G., Ighalo, J. O., Adsorption of ciprofloxacin from water: a comprehensive review (2021) Journal of Industrial and Engineering Chemistry, 93, pp. 57-77. , https://doi.org/10.1016/j.jiec.2020.09.023 | |
dc.relation.references | Angaru, G. K. R., Lingamdinne, L. P., Choi, Y. L., Koduru, J. R., Chang, Y. Y., Catalytic binary oxides decorated zeolite as a remedy for As (III) polluted groundwater: Synergistic effects and mechanistic analysis (2023) Journal of Environmental Chemical Engineering, 11 (2), p. 109544. , https://doi.org/10.1016/j.jece.2023.109544 | |
dc.relation.references | Al-Hakkani, M. F., Gouda, G. A., Hassan, S. H., Mohamed, M. M., Nagiub, A. M., Environmentally azithromycin pharmaceutical wastewater management and synergetic biocompatible approaches of loaded azithromycin@ hematite nanoparticles (2022) Scientific Reports, 12 (1), p. 10970. , https://doi.org/10.1038/s41598-022-14997-y, 2022 | |
dc.relation.references | PMID: 35768496 | |
dc.relation.references | Mangla, D., Sharma, A., Ikram, S., Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective (2022) Journal of Hazardous Materials, 425, p. 127946. , https://doi.org/10.1016/j.jhazmat.2021.127946, PMID: 34891019 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |