Show simple item record

dc.contributor.authorCastro-Jiménez C.C
dc.contributor.authorSaldarriaga-Molina J.C
dc.contributor.authorGarcía E.F
dc.contributor.authorTorres-Palma R.A
dc.contributor.authorAcelas N.
dc.date.accessioned2025-04-28T22:10:47Z
dc.date.available2025-04-28T22:10:47Z
dc.date.created2025
dc.identifier.issn19326203
dc.identifier.urihttp://hdl.handle.net/11407/8906
dc.descriptionIn this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500̊C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993–0.999, APE: 0.07–1.30%, and Δq: 0.10–2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy. © 2025 Castro-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.language.isoeng
dc.publisherPublic Library of Science
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85214872292&doi=10.1371%2fjournal.pone.0316487&partnerID=40&md5=ba502f848c3ea3868d60669ec42b3c9a
dc.sourcePLoS ONE
dc.sourcePLoS ONE
dc.sourceScopus
dc.subjectAzithromycin
dc.subjectDrinking water
dc.subjectAdsorption
dc.subjectChemistry
dc.subjectIsolation and purification
dc.subjectKinetics
dc.subjectProcedures
dc.subjectSewage
dc.subjectWater management
dc.subjectWater pollutant
dc.subjectAdsorption
dc.subjectAzithromycin
dc.subjectDrinking Water
dc.subjectKinetics
dc.subjectSewage
dc.subjectWater Pollutants, Chemical
dc.subjectWater Purification
dc.titleAzithromycin removal from water via adsorption on drinking water sludge-derived materials: Kinetics and isotherms studies
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo revisado por pares
dc.identifier.doi10.1371/journal.pone.0316487
dc.relation.citationvolume20
dc.relation.citationissue1
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationCastro-Jiménez, C.C., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia
dc.affiliationSaldarriaga-Molina, J.C., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia
dc.affiliationGarcía, E.F., Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia
dc.affiliationTorres-Palma, R.A., Facultad de Ciencias Exactas y Naturales, Instituto de Química, Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Universidad de Antioquia UdeA, Medellín, Colombia
dc.affiliationAcelas, N., Grupo de Investigación Materiales con Impacto (Mat&mpac) Universidad de Medellín, Medellín, Colombia
dc.relation.references(2015) Transforming our world: the 2030 Agenda for Sustainable Development A/RES/ 70/1, , https://www.refworld.org/docid/57b6e3e44.html, Oct 21 [cited 2024 March 2]. [Accessed 26 October 2023]
dc.relation.referencesHe, L, Chen, Y, Li, Y, Sun, F, Zhao, Y, Yang, S., Adsorption of Congo red and tetracycline onto water treatment sludge biochar: characterisation, kinetic, equilibrium and thermodynamic study (2022) Water Sci Technol, 85 (6), pp. 1936-1951. , https://doi.org/10.2166/wst.2022.085, March 15
dc.relation.referencesPMID: 35358080
dc.relation.referencesAshraf, A, Liu, G, Yousaf, B, Arif, M, Ahmed, R., Rashid, A, Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation (2022) Environmental Science and Pollution Research, 29 (22), pp. 32513-32544. , https://doi.org/10.1007/s11356-022-19119-9, PMID: 35190984
dc.relation.referencesSosa-Hernández, JE., Rodas-Zuluaga, LI, López-Pacheco, IY., Melchor-Martínez, EM, Aghalari, Z, Salas, D, Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation (2021) Case studies in chemical and environmental engineering, 4, p. 100127. , https://doi.org/10.1016/j.cscee.2021.100127, PMID: 38620862
dc.relation.referencesManaia, CM, Macedo, G, Fatta-Kassinos, D, Nunes, OC., Antibiotic resistance in urban aquatic environments: can it be controlled? (2016) Applied microbiology and biotechnology, 100, pp. 1543-1557. , https://doi.org/10.1007/s00253-015-7202-0, PMID: 26649735
dc.relation.referencesLoos, R., Marinov, D., Sanseverino, I., Napierska, D, Lettieri, T., (2018) Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, , https://doi.org/10.2760/614367, Publications Office of the European Union: Luxembourg
dc.relation.referencesSamrot, A. V., Wilson, S., Sanjay Preeth, R. S., Prakash, P., Sathiyasree, M., Saigeetha, S., Sources of antibiotic contamination in wastewater and approaches to their removal—An overview (2023) Sustainability, 15 (16), p. 12639. , https://doi.org/10.3390/su151612639
dc.relation.referencesArif, M, Liu, G, Zia ur Rehman, M, Mian, MM., Ashraf, A., Yousaf, B, Impregnation of biochar with montmorillonite and its activation for the removal of azithromycin from aqueous media (2023) Environmental Science and Pollution Research, 30 (32), pp. 78279-78293. , https://doi.org/10.1007/s11356-023-27908-z, PMID: 37269518
dc.relation.referencesEcheverría-Esnal, D, Martin-Ontiyuelo, C, Navarrete-Rouco, ME, De-Antonio, M, Ferrández, O, Horcajada, JP, Azithromycin in the treatment of COVID-19: a review (2021) Expert review of anti-infective therapy, 19 (2), pp. 147-163. , https://doi.org/10.1080/14787210.2020.1813024, PMID: 32853038
dc.relation.referencesZhao, L., Lv, Z., Lin, L., Li, X., Xu, J., Huang, S., Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater (2023) Environmental Pollution, 334, p. 122133. , https://doi.org/10.1016/j.envpol.2023.122133, PMID: 37399936
dc.relation.referencesAzari, A., Malakoutian, M., Yaghmaeain, K., Jaafarzadeh, N., Shariatifar, N., Mohammadi, G., Magnetic NH2-MIL-101 (Al)/Chitosan nanocomposite as a novel adsorbent for the removal of azithromycin: modeling and process optimization (2022) Scientific Reports, 12 (1), p. 18990. , https://doi.org/10.1038/s41598-022-21551-3, PMID: 36347864
dc.relation.referencesSingh, V., Gupta, S. P., Samanta, S. K., Water resource rejuvenation via AOP based degradation of pharmaceuticals extensively used during COVID-19 (2024) Journal of Water Process Engineering, 67, p. 106137. , https://doi.org/10.1016/j.jwpe.2024.106137
dc.relation.referencesRaut, S., Behera, A. K., Sahoo, S. K., Electrospun polyacrylonitrile reinforced greenly synthesized iron oxide nanocomposite fibers sheet for remediation of azithromycin from water (2024) Materials Today Communications, 40, p. 110113. , https://doi.org/10.1016/j.mtcomm.2024.110113
dc.relation.referencesSabater-Liesa, L., Montemurro, N., Ginebreda, A., Barceló, D., Eichhorn, P., Pérez, S., Retrospective mass spectrometric analysis of wastewater-fed mesocosms to assess the degradation of drugs and their human metabolites (2021) Journal of Hazardous Materials, 408, p. 124984. , https://doi.org/10.1016/j.jhazmat.2020.124984, PMID: 33418519
dc.relation.referencesMilaković, M., Vestergaard, G., González-Plaza, J. J., Petrić, I., Šimatović, A., Senta, I., Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments (2019) Environment international, 123, pp. 501-511. , https://doi.org/10.1016/j.envint.2018.12.050, PMID: 30622075
dc.relation.referencesHussain, A., Afzal, O., Altamimi, A. S., Ali, R., Application of green nanoemulsion to treat contaminated water (bulk aqueous solution) with azithromycin (2021) Environmental Science and Pollution Research, 28, pp. 61696-61706. , https://doi.org/10.1007/s11356-021-15031-w, PMID: 34184229
dc.relation.referencesKoch, D. E., Bhandari, A., Close, L., Hunter, R. P., Azithromycin extraction from municipal wastewater and quantitation using liquid chromatography/mass spectrometry (2005) Journal of Chromatography A, 1074 (1–2), pp. 17-22. , https://doi.org/10.1016/j.chroma.2005.03.052, PMID: 15941034
dc.relation.referencesMorales-Paredes, CA, Rodríguez-Díaz, JM., Boluda-Botella, N., Pharmaceutical compounds used in the COVID-19 pandemic: A review of their presence in water and treatment techniques for their elimination (2022) Science of the Total Environment, 814, p. 152691. , https://doi.org/10.1016/j.scitotenv.2021.152691, PMID: 34974020
dc.relation.referencesBotero-Coy, AM, Martínez-Pachón, D, Boix, C, Rincón, RJ, Castillo, N., Arias-Marín, LP, An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater (2018) Science of the Total Environment, 642, pp. 842-853. , https://doi.org/10.1016/j.scitotenv.2018.06.088, PMID: 30045524
dc.relation.referencesCano, PA, Jaramillo-Baquero, M, Zúñiga-Benítez, H, Londoño, YA, Peñuela, GA., Use of simulated sunlight radiation and hydrogen peroxide in azithromycin removal from aqueous solutions: optimization & mineralization analysis (2020) Emerging Contaminants, 6, pp. 53-61. , https://doi.org/10.1016/j.emcon.2019.12.004
dc.relation.referencesVrchovecká, S, Asatiani, N, Antoš, V, Wacławek, S, Hrabák, P., Study of Adsorption Efficiency of Lignite, Biochar, and Polymeric Nanofibers for Veterinary Drugs in WWTP Effluent Water (2023) Water, Air, & Soil Pollution, 234 (4), p. 268. , https://doi.org/10.1007/s11270-023-06281-0
dc.relation.referencesMehrdoost, A, Yengejeh, RJ, Mohammadi, MK, Haghighatzadeh, A, Babaei, AA., Adsorption removal and photocatalytic degradation of azithromycin from aqueous solution using PAC/Fe/Ag/Zn nanocomposite (2022) Environmental Science and Pollution Research, 29 (22), pp. 33514-33527. , https://doi.org/10.1007/s11356-021-18158-y, PMID: 35029828
dc.relation.referencesBalarak, D, Mahvi, AH, Shahbaksh, S, Wahab, MA, Abdala, A., Adsorptive removal of azithromycin antibiotic from aqueous solution by azolla filiculoides-based activated porous carbon (2021) Nanomaterials, 11 (12), p. 3281. , https://doi.org/10.3390/nano11123281, PMID: 34947630
dc.relation.referencesGholamian, S, Hamzehloo, M, Farrokhnia, A, Mahdavifar, Z., Response surface methodology optimizing the adsorptive removal of azithromycin using mesoporous silica SBA-15: mechanism, thermodynamic, equilibrium, and kinetics modeling studies (2021) Journal of Environmental Science and Health, Part A, 56 (10), pp. 1145-1164. , https://doi.org/10.1080/10934529.2021.1974267, PMID: 34558387
dc.relation.referencesImanipoor, J, Mohammadi, M, Dinari, M., Evaluating the performance of L-methionine modified montmorillonite K10 and 3-aminopropyltriethoxysilane functionalized magnesium phyllosilicate organoclays for adsorptive removal of azithromycin from water (2021) Separation and Purification Technology, 275, p. 119256. , https://doi.org/10.1016/j.seppur.2021.119256
dc.relation.referencesSaadi, Z, Fazaeli, R, Vafajoo, L, Naser, I, Mohammadi, G., Promotion of clinoptilolite adsorption for azithromycin antibiotic by Tween 80 and Triton X-100 surface modifiers under batch and fixed-bed processes (2021) Chemical Engineering Communications, 208 (3), pp. 328-348. , https://doi.org/10.1080/00986445.2020.1715955
dc.relation.referencesDavoodi, S, Dahrazma, B, Goudarzi, N, Gorji, HG., Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite (2019) Water Science and Technology, 80 (5), pp. 939-949. , https://doi.org/10.2166/wst.2019.337, PMID: 31746801
dc.relation.referencesDe Sousa, DNR, Insa, S, Mozeto, AA, Petrovic, M, Chaves, TF, Fadini, PS., Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites (2018) Chemosphere, 205, pp. 137-146. , https://doi.org/10.1016/j.chemosphere.2018.04.085, PMID: 29689527
dc.relation.referencesRacar, M, Dolar, D, Karadakić, K, Čavarović, N, Glumac, N, Ašperger, D, Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants (2020) Science of the Total Environment, 722, p. 137959. , https://doi.org/10.1016/j.scitotenv.2020.137959, PMID: 32208282
dc.relation.referencesRueda-Márquez, JJ, Palacios-Villarreal, C, Manzano, M., Blanco, E., del Solar, M R, Levchuk, I., Photocatalytic degradation of pharmaceutically active compounds (PhACs) in urban wastewater treatment plants effluents under controlled and natural solar irradiation using immobilized TiO2 (2020) Solar Energy, 208, pp. 480-492. , https://doi.org/10.1016/j.solener.2020.08.028
dc.relation.referencesFiorentino, A, Esteban, B, Garrido-Cardenas, JA, Kowalska, K, Rizzo, L, Aguera, A, Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater (2019) Journal of Hazardous Materials, 378, p. 120737. , https://doi.org/10.1016/j.jhazmat.2019.06.014, PMID: 31202058
dc.relation.referencesSayadi, MH, Sobhani, S, Shekari, H., Photocatalytic degradation of azithromycin using GO@ Fe3O4/ZnO/ SnO2 nanocomposites (2019) Journal of Cleaner Production, 232, pp. 127-136. , https://doi.org/10.1016/j.jclepro.2019.05.338
dc.relation.referencesSerna-Galvis, EA, Botero-Coy, AM, Martínez-Pachón, D, Moncayo-Lasso, A, Ibáñez, M, Hernández, F, Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes (2019) Water Research, 154, pp. 349-360. , https://doi.org/10.1016/j.watres.2019.01.045, PMID: 30818100
dc.relation.referencesBayati, M, Ho, TL, Vu, DC, Wang, F, Rogers, E, Cuvellier, C, Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts (2021) International Journal of Hygiene and Environmental Health, 231, p. 113664. , https://doi.org/10.1016/j.ijheh.2020.113664, PMID: 33212356
dc.relation.referencesTang, K, Rosborg, P, Rasmussen, ES, Hambly, A, Madsen, M, Jensen, NM, Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR) (2021) Journal of Hazardous Materials, 403, p. 123536. , https://doi.org/10.1016/j.jhazmat.2020.123536, PMID: 32823027
dc.relation.referencesKiki, C, Rashid, A, Wang, Y, Li, Y, Zeng, Q, Yu, CP, Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways (2020) Journal of Hazardous Materials, 387, p. 121985. , https://doi.org/10.1016/j.jhazmat.2019.121985, PMID: 31911384
dc.relation.referencesLiu, PY, Chen, JR, Shao, L, Tan, J, Chen, DJ., Responses of flocculent and granular sludge in anaerobic sequencing batch reactors (ASBRs) to azithromycin wastewater and its impact on microbial communities (2018) Journal of Chemical Technology & Biotechnology, 93 (8), pp. 2341-2350. , https://doi.org/10.1002/jctb.5578
dc.relation.referencesSbardella, L, Comas, J, Fenu, A, Rodriguez-Roda, I, Weemaes, M., Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater (2018) Science of the Total Environment, 636, pp. 519-529. , https://doi.org/10.1016/j.scitotenv.2018.04.214, PMID: 29715656
dc.relation.referencesMojahedimotlagh, F., Nasab, E. A., Foroutan, R., Vakilabadi, D. R., Dobaradaran, S., Azamateslamtalab, E., Azithromycin decomposition from simple and complex waters by H2O2 activation over a recyclable catalyst of clay modified with nanofiltration process brine (2024) Environmental Technology & Innovation, 33, p. 103512. , https://doi.org/10.1016/j.eti.2023.103512
dc.relation.referencesRamos, B.D.P, Perez, I.D, Aliprandini, P, Boina, R.F., Cu2+, Cr3+, and Ni 2+ in mono-and multi-component aqueous solution adsorbed in passion fruit peels in natura and physicochemically modified: A comparative approach (2022) Environmental Science and Pollution Research, 29, pp. 79841-79854. , https://doi.org/10.1007/s11356-021-18132-8, PMID: 34981402
dc.relation.referencesSousa, ÉM, Otero, M, Rocha, LS, Gil, MV, Ferreira, P, Esteves, VI, Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes-Application in the removal of antibiotics from water (2022) Journal of Hazardous Materials, 431, p. 128556. , https://doi.org/10.1016/j.jhazmat.2022.128556, PMID: 35255334
dc.relation.referencesYang, J, Ren, Y, Chen, S, Zhang, Z, Pang, H, Wang, X, Thermally activated drinking water treatment sludge as a supplementary cementitious material: Properties, pozzolanic activity and hydration characteristics (2023) Construction and Building Materials, 365, p. 130027. , https://doi.org/10.1016/j.conbuildmat.2022.130027
dc.relation.referencesBensitel, N, Haboubi, K, Azar, FZ, El Hammoudani, Y, El Abdouni, A, Haboubi, C, Potential reuse of sludge from a potable water treatment plant in Al Hoceima city in northern Morocco (2023) Water Cycle, 4, pp. 154-162. , https://doi.org/10.1016/j.watcyc.2023.07.002
dc.relation.referencesSharma, A, Ahammed, MM., Application of modified water treatment residuals in water and wastewater treatment: A review (2023) Heliyon, 9 (5), p. e15796. , https://doi.org/10.1016/j.heliyon.2023.e15796, PMID: 37305496
dc.relation.referencesPunamiya, P, Sarkar, D, Rakshit, S, Datta, R., Effectiveness of aluminum-based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium (2013) Journal of Environmental Quality, 42 (5), pp. 1449-1459. , https://doi.org/10.2134/jeq2013.03.0082, PMID: 24216422
dc.relation.referencesSaman, N., Subramanian, K. K., Johari, K., Mat Taib, S., Marčiulaitienė, E., Physicochemistry properties of water treatment sludge (WTS) as adsorbents for dyes and antibiotics removal (2023) Conference paper. 12th International Conference “Environmental Engineering”, , Vilnius, Lithuania
dc.relation.referencesBrunauer, S, Emmett, PH, Teller, E., Adsorption of gases in multimolecular layers (1938) Journal of the American Chemical Society, 60 (2), pp. 309-319. , https://doi.org/10.1021/ja01269a023
dc.relation.referencesGuechi, EK, Hamdaoui, O., Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies (2016) Desalination and Water Treatment, 57 (22), pp. 10270-10285
dc.relation.referencesMartínez-Polanco, MP, Valderrama-Rincón, JA, Martínez-Rojas, AJ, Luna-Wandurraga, HJ, Díaz-Báez, MC, Bustos-López, MC, Degradation of high concentrations of azithromycin when present in a high organic content wastewater by using a continuously fed laboratory-scale UASB bioreactor (2022) Chemosphere, 287, p. 132191. , https://doi.org/10.1016/j.chemosphere.2021.132191, PMID: 34509021
dc.relation.referencesKumar, V, Singh, SK, Gulati, M, Anishetty, R, Shunmugaperumal, T., Development and validation of a simple and sensitive spectrometric method for estimation of azithromycin dihydrate in tablet dosage forms: application to dissolution studies (2013) Current Pharmaceutical Analysis, 9 (3), pp. 310-317. , https://doi.org/10.2174/1573412911309030009
dc.relation.referencesSultana, N, Arayne, MS, Hussain, F, Fatima, A., Degradation studies of azithromycin and its spectrophotometric determination in pharmaceutical dosage forms (2006) Pak J Pharm Sci, 19 (2), pp. 98-103. , Apr
dc.relation.referencesPMID: 16751118
dc.relation.referencesRevellame, ED, Fortela, DL, Sharp, W, Hernandez, R, Zappi, ME., Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review (2020) Cleaner Engineering and Technology, 1, p. 100032. , https://doi.org/10.1016/j.clet.2020.100032
dc.relation.referencesWang, J, Guo, X., Adsorption kinetic models: Physical meanings, applications, and solving methods (2020) Journal of Hazardous Materials, 390, p. 122156. , https://doi.org/10.1016/j.jhazmat.2020.122156, PMID: 32006847
dc.relation.referencesFreundlich, HMF., Over the adsorption in solution (1906) J. Phys. Chem, 57, pp. 1100-1107. , (385471)
dc.relation.referencesLangmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum (1918) J. Am. Chem. Soc, 40 (9), pp. 1361-1403. , https://doi.org/10.1021/ja02242a004
dc.relation.referencesSips, R., On the structure of a catalyst surface (1948) J. Chem. Phys, 16 (5), pp. 490-495. , https://doi.org/10.1063/1.1746922
dc.relation.referencesSips, R., On the structure of a catalyst surface. II (1950) J. Chem. Phys, 18 (8), pp. 1020-1026. , https://doi.org/10.1063/1.1747848
dc.relation.referencesJeppu, GP, Clement, TP., A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects (2012) Journal of Contaminant Hydrology, , https://doi.org/10.1016/j.jconhyd.2011.12.001, 129–130: 46–53, PMID: 22261349
dc.relation.referencesKumar, N. S., Asif, M., Poulose, A. M., Al-Ghurabi, E. H., Alhamedi, S. S., Koduru, J. R., Date palm fiber agro-waste biomass for efficient removal of 2, 4, 6-Trichlorophenol from aqueous solution: Characterization, Kinetics, Isotherms studies and Cost-effective analysis Desalination and Water Treatment, 2024, p. 100405. , https://doi.org/10.1016/j.dwt.2024.100405
dc.relation.referencesParedes-Laverde, M, Salamanca, M, Silva-Agredo, J, Manrique-Losada, L, Torres-Palma, RA., Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions (2019) Journal of Environmental Chemical Engineering, 7 (5), p. 103318. , https://doi.org/10.1016/j.jece.2019.103318
dc.relation.referencesNagaraj, A, Sadasivuni, KK, Rajan, M., Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water (2017) Carbohydrate Polymers, 176, pp. 402-410. , https://doi.org/10.1016/j.carbpol.2017.08.089, PMID: 28927624
dc.relation.referencesOspina-Montoya, V., Cardozo, V., Porras, J., Acelas, N., Forgionny, A., Valorization of coffee husks for the sustainable removal of pharmaceuticals from aqueous solutions (2024) H2Open Journal, 7 (3), pp. 303-317. , https://doi.org/10.2166/h2oj.2024.102
dc.relation.referencesParedes-Laverde, M, Silva-Agredo, J, Torres-Palma, RA., Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents (2018) Journal of Environmental Management, 213, pp. 98-108. , https://doi.org/10.1016/j.jenvman.2018.02.047, PMID: 29482094
dc.relation.referencesTest No. 303: Simulation Test - Aerobic Sewage Treatment - A: Activated Sludge Units
dc.relation.referencesB: Biofilms (2001) OECD Guidelines for the Testing of Chemicals, , https://doi.org/10.1787/9789264070424-en, Section 3. Paris: OECD Publishing
dc.relation.referencesTeixeira, SR, Santos, GTA, Souza, AE, Alessio, P, Souza, SA., Souza, NR., The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials (2011) Applied Clay Science, 53 (4), pp. 561-565. , https://doi.org/10.1016/j.clay.2011.05.004
dc.relation.referencesMartins, DS, Estevam, BR, Perez, ID, Américo-Pinheiro, JHP, Isique, WD, Boina, RF., Sludge from a water treatment plant as an adsorbent of endocrine disruptors (2022) Journal of Environmental Chemical Engineering, 10 (4), p. 108090
dc.relation.referencesEveraert, M, Bergmans, J, Broos, K, Hermans, B, Michielsen, B., Granulation and calcination of alum sludge for the development of a phosphorus adsorbent: from lab scale to pilot scale (2021) Journal of Environmental Management, 279, p. 111525. , https://doi.org/10.1016/j.jenvman.2020.111525, PMID: 33168303
dc.relation.referencesShamaki, M, Adu-Amankwah, S, Black, L., Reuse of UK alum water treatment sludge in cement-based materials (2021) Construction and Building Materials, 275, p. 122047. , https://doi.org/10.1016/j.conbuildmat.2020.122047
dc.relation.referencesJeon, EK, Ryu, S, Park, SW, Wang, L, Tsang, DC., Baek, K., Enhanced adsorption of arsenic onto alum sludge modified by calcination (2018) Journal of Cleaner Production, 176, pp. 54-62. , https://doi.org/10.1016/j.jclepro.2017.12.153
dc.relation.referencesParedes-Laverde, M., Salamanca, M., Diaz-Corrales, JD, Flórez, E., Silva-Agredo, J, Torres-Palma, RA., Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study (2021) Journal of Environmental Chemical Engineering, 9 (4), p. 105685. , https://doi.org/10.1016/j.jece.2021.105685
dc.relation.referencesSidhu, H, D’Angelo, E, O’Connor, G., Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils (2019) Science of the Total Environment, 650, pp. 173-183. , https://doi.org/10.1016/j.scitotenv.2018.09.005, (Part 1): PMID: 30196217
dc.relation.referencesNie, J, Yan, S, Lian, L, Sharma, VK, Song, W., Development of fluorescence surrogates to predict the fer-rate (VI) oxidation of pharmaceuticals in wastewater effluents (2020) Water Research, 185, p. 116256. , https://doi.org/10.1016/j.watres.2020.116256, PMID: 32768661
dc.relation.referencesRodríguez-López, L, Santás-Miguel, V, Núñez-Delgado, A, Álvarez-Rodríguez, E, Pérez-Rodríguez, P, Arias-Estévez, M., Influence of pH, humic acids, and salts on the dissipation of amoxicillin and azithromycin under simulated sunlight (2022) Spanish Journal of Soil Science, 12, p. 10438. , https://doi.org/10.3389/sjss.2022.10438
dc.relation.referencesRamirez, A, Ocampo, R, Giraldo, S, Padilla, E, Flórez, E, Acelas, N., Removal of Cr (VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations (2020) Journal of Environmental Chemical Engineering, 8 (2), p. 103702. , https://doi.org/10.1016/j.jece.2020.103702
dc.relation.referencesSubramanyam, B, Das, A., Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means (2014) J Environ Health Sci Engineer, 12, p. 92. , https://doi.org/10.1186/2052-336X-12-92, PMID: 25018878
dc.relation.referencesTran, HN, Lima, EC, Juang, RS, Bollinger, JC, Chao, HP., Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study (2021) Journal of Environmental Chemical Engineering, 9 (6), p. 106674. , https://doi.org/10.1016/j.jece.2021.10667
dc.relation.referencesTran, HN, You, SJ, Hosseini-Bandegharaei, A, Chao, HP., Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review (2017) Water Research, 120, pp. 88-116. , https://doi.org/10.1016/j.watres.2017.04.014, PMID: 28478298
dc.relation.referencesTuriel, E, Perez-Conde, C, Martin-Esteban, A., Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm (2003) Analyst, 128 (2), pp. 137-141. , https://doi.org/10.1039/b210712k, PMID: 12625553
dc.relation.referencesBougrine, O., El Fellah, I., Kada, I., Rabie, F. A., Lanjri, A. F., Ammari, M., Advancing Circular Economy: A study of Drinking Water Sludge for Potential Uses (2024) Results in Engineering, p. 102426. , https://doi.org/10.1016/j.rineng.2024.102426
dc.relation.referencesUpoma, B. P., Yasmin, S., Ali Shaikh, M. A., Jahan, T., Haque, M. A., Moniruzzaman, M., A fast adsorption of azithromycin on waste-product-derived graphene oxide induced by H-bonding and electrostatic interactions (2022) ACS Omega, 7 (34), pp. 29655-29665. , https://doi.org/10.1021/acsomega.2c01919, PMID: 36061663
dc.relation.referencesIgwegbe, C. A., Oba, S. N., Aniagor, C. O., Adeniyi, A. G., Ighalo, J. O., Adsorption of ciprofloxacin from water: a comprehensive review (2021) Journal of Industrial and Engineering Chemistry, 93, pp. 57-77. , https://doi.org/10.1016/j.jiec.2020.09.023
dc.relation.referencesAngaru, G. K. R., Lingamdinne, L. P., Choi, Y. L., Koduru, J. R., Chang, Y. Y., Catalytic binary oxides decorated zeolite as a remedy for As (III) polluted groundwater: Synergistic effects and mechanistic analysis (2023) Journal of Environmental Chemical Engineering, 11 (2), p. 109544. , https://doi.org/10.1016/j.jece.2023.109544
dc.relation.referencesAl-Hakkani, M. F., Gouda, G. A., Hassan, S. H., Mohamed, M. M., Nagiub, A. M., Environmentally azithromycin pharmaceutical wastewater management and synergetic biocompatible approaches of loaded azithromycin@ hematite nanoparticles (2022) Scientific Reports, 12 (1), p. 10970. , https://doi.org/10.1038/s41598-022-14997-y, 2022
dc.relation.referencesPMID: 35768496
dc.relation.referencesMangla, D., Sharma, A., Ikram, S., Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective (2022) Journal of Hazardous Materials, 425, p. 127946. , https://doi.org/10.1016/j.jhazmat.2021.127946, PMID: 34891019
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record