dc.contributor.author | Muñoz Peña A.C | |
dc.contributor.author | Flórez E | |
dc.contributor.author | Núñez-Zarur F. | |
dc.date.accessioned | 2025-04-28T22:10:49Z | |
dc.date.available | 2025-04-28T22:10:49Z | |
dc.date.created | 2025 | |
dc.identifier.issn | 21911363 | |
dc.identifier.uri | http://hdl.handle.net/11407/8909 | |
dc.description | Conversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO2 has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO2 at the Density Functional Theory level. We found several adsorption modes on these surfaces, with anatase (101) being the less reactive one, leading to adsorption energies between −0.8 and −0.4 eV, with all adsorptions molecular in nature. On the contrary, anatase (001) is the most reactive surface, leading to both molecular and dissociative adsorption modes, with energies ranging from −4 to −1 eV and undergoing severe surface reconstructions in some cases. Rutile (110) also shows both molecular and dissociative adsorptions, but it is less reactive than anatase (001). Surfaces with oxygen vacancies affects the adsorbed states and energies. The electronic structure analysis reveals that glycerol adsorption mainly affects the band gap of the material and not the individual contributions to the valence and conduction band. Bader charge analysis shows that strong adsorption modes on anatase (001) and rutile (110) are associated with large charge transfer from glycerol to the surface, while weak and molecular adsorption modes involve low charge transfer. © 2024 The Authors. ChemistryOpen published by Wiley-VCH GmbH. | |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Inc | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216263219&doi=10.1002%2fopen.202400153&partnerID=40&md5=14b9012ef11d1033b5cac359905e905a | |
dc.source | ChemistryOpen | |
dc.source | ChemistryOpen | |
dc.source | Scopus | |
dc.subject | ab initio calculation | |
dc.subject | Adsorption energy | |
dc.subject | Glycerol adsorption | |
dc.subject | TiO2 | |
dc.subject | Titanium dioxide | |
dc.subject | Glycerol | |
dc.subject | Molecular docking | |
dc.subject | Specific energy | |
dc.subject | Ab initio calculations | |
dc.subject | Adsorption energies | |
dc.subject | Adsorption modes | |
dc.subject | DFT study | |
dc.subject | Energy | |
dc.subject | Glycerol adsorption | |
dc.subject | Molecular and dissociative adsorption | |
dc.subject | Periodic DFT | |
dc.subject | TiO 2 | |
dc.subject | Titania | |
dc.subject | Titanium dioxide | |
dc.subject | ab initio calculation | |
dc.subject | Adsorption energy | |
dc.subject | Glycerol adsorption | |
dc.subject | TiO2 | |
dc.subject | Titanium dioxide | |
dc.title | Glycerol Adsorption on TiO2 Surfaces: A Systematic Periodic DFT Study | |
dc.type | Article | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.type.spa | Artículo revisado por pares | |
dc.identifier.doi | 10.1002/open.202400153 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | |
dc.affiliation | Muñoz Peña, A.C., Chemistry and Biochemistry Department, New Mexico State University, Las Cruces, NM 88001, United States, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia | |
dc.affiliation | Núñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia, Departamento de Química, Facultad de Ciencias, Universidad Nacional de, Colombia − Sede Bogotá, Carrera 30 No., 45–03, Bogotá, 111321, Colombia | |
dc.relation.references | Braun, M., Santana, C.S., Garcia, A.C., Andronescu, C., (2023) Curr. Opin. Green Sustain. Chem., 41 | |
dc.relation.references | Mohan, K., Pai, S.D.K.R., Reghunath, B.S., Pinheiro, D., (2023) ChemistrySelect, 8 | |
dc.relation.references | Charles Rajesh Kumar, J., Majid, M.A., (2020) Energy. Sustain. Soc., 10 | |
dc.relation.references | Decarpigny, C., Aljawish, A., His, C., Fertin, B., Bigan, M., Dhulster, P., Millares, M., Froidevaux, R., (2022) Energies, 15 | |
dc.relation.references | Thanh, L.T., Okitsu, K., Van Boi, L., Maeda, Y., (2012) Catalysts, 2, pp. 191-222 | |
dc.relation.references | Kuo, H.H., Vo, T.G., Hsu, Y.J., (2024) J. Photochem. Photobiol. C Photochem. Rev., 58 | |
dc.relation.references | Pirzadi, Z., Meshkani, F., (2022) Fuel, 329 | |
dc.relation.references | Anitha, M., Kamarudin, S.K., Kofli, N.T., (2016) Chem. Eng. J., 295, pp. 119-130 | |
dc.relation.references | Checa, M., Nogales-Delgado, S., Montes, V., Encinar, J.M., (2020) Catalysts, 10, pp. 1-41 | |
dc.relation.references | Liu, Y., Zhang, B., Yan, D., Xiang, X., (2024) Green Chem., 26, pp. 2505-2524 | |
dc.relation.references | Dodekatos, G., Schünemann, S., Tüysüz, H., (2018) ACS Catal., 8, pp. 6301-6333 | |
dc.relation.references | Torres, S., Palacio, R., López, D., (2021) Appl. Catal. A Gen., 621 | |
dc.relation.references | Lin, Y.C., (2013) Int. J. Hydrogen Energy, 38, pp. 2678-2700 | |
dc.relation.references | Pires, M.H.M., Passos, F.B., Xing, Y., (2023) Catal. Today, 419 | |
dc.relation.references | Han, X., Sheng, H., Yu, C., Walker, T.W., Huber, G.W., Qiu, J., Jin, S., (2020) ACS Catal., 10, pp. 6741-6752 | |
dc.relation.references | Vaidya, P.D., Rodrigues, A.E., (2009) Chem. Eng. Technol., 32, pp. 1463-1469 | |
dc.relation.references | Anastas, P., Eghbali, N., (2010) Chem. Soc. Rev., 39, pp. 301-312 | |
dc.relation.references | Bourikas, K., Kordulis, C., Lycourghiotis, A., (2014) Chem. Rev., 114, pp. 9754-9823 | |
dc.relation.references | Diebold, U., (2003) Surf. Sci. Rep., 48, pp. 53-229 | |
dc.relation.references | Rinaudo, M.G., Beltrán, A.M., Fernández, A., Cadús, L.E., Morales, M.R., (2022) Results Eng., 16 | |
dc.relation.references | López-Tenllado, F.J., Hidalgo-Carrillo, J., Montes, V., Marinas, A., Urbano, F.J., Marinas, J.M., Ilieva, L., Reid, F., (2017) Catal. Today, 280, pp. 58-64 | |
dc.relation.references | Wu, G., Liu, Y., He, Y., Feng, J., Li, D., (2021) Appl. Catal. B Environ., 291 | |
dc.relation.references | Panagiotopoulou, P., Karamerou, E.E., Kondarides, D.I., (2013) Catal. Today, 209, pp. 91-98 | |
dc.relation.references | Zhang, X., Gao, M., Yang, P., Cui, X., Liu, Y., Li, D., Feng, J., (2021) J. Porous Mater., 28, pp. 1371-1385 | |
dc.relation.references | D'Agostino, C., Brett, G., Divitini, G., Ducati, C., Hutchings, G.J., Mantle, M.D., Gladden, L.F., (2017) ACS Catal., 7, pp. 4235-4241 | |
dc.relation.references | Mondach, W., Chanklang, S., Somchuea, P., Witoon, T., Chareonpanich, M., Faungnawakij, K., Sohn, H., Seubsai, A., (2021) Sci. Rep., 11, p. 23042 | |
dc.relation.references | Rojas, N., Hincapié-Triviño, G., Velasquez, M., (2024) Mol. Catal., 566 | |
dc.relation.references | Augugliaro, V., El Nazer, H.A.H., Loddo, V., Mele, A., Palmisano, G., Palmisano, L., Yurdakal, S., (2010) Catal. Today, 151, pp. 21-28 | |
dc.relation.references | Jedsukontorn, T., Meeyoo, V., Saito, N., Hunsom, M., (2015) Chem. Eng. J., 281, pp. 252-264 | |
dc.relation.references | Huo, P., Kumar, P., Liu, B., (2018) Catalysts, 8, p. 616 | |
dc.relation.references | Guo, Q., Ma, Z., Zhou, C., Ren, Z., Yang, X., (2019) Chem. Rev., 119, pp. 11020-11041 | |
dc.relation.references | Campbell, C.T., Sellers, J.R.V., (2013) Chem. Rev., 113, pp. 4106-4135 | |
dc.relation.references | Wang, R., Wang, B., Abdullahi, A.S., Fan, H., (2024) Wiley Interdiscip. Rev. Comput. Mol. Sci., 14 | |
dc.relation.references | Dohnálek, Z., Lyubinetsky, I., Rousseau, R., (2010) Prog. Surf. Sci., 85, pp. 161-205 | |
dc.relation.references | Carchini, G., López, N., (2014) Phys. Chem. Chem. Phys., 16, pp. 14750-14760 | |
dc.relation.references | Babaei, Z., Najafi Chermahini, A., Dinari, M., (2020) J. Colloid Interface Sci., 563, pp. 1-7 | |
dc.relation.references | Jia, F., Zhou, H., Wang, M., (2023) Chem. Commun., 59, pp. 11377-11380 | |
dc.relation.references | Ernzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, pp. 5029-5036 | |
dc.relation.references | Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, pp. 558-561 | |
dc.relation.references | Kresse, G., Hafner, J., (1994) Phys. Rev. B, 49, pp. 14251-14269 | |
dc.relation.references | Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, pp. 11169-11186 | |
dc.relation.references | Kresse, G., Hafner, J., (1994) J. Phys. Condens. Matter, 6, pp. 8245-8257 | |
dc.relation.references | Joubert, D., (1999) Phys. Rev. B - Condens. Matter Mater. Phys., 59, pp. 1758-1775 | |
dc.relation.references | Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132 | |
dc.relation.references | Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Persson, K.A., (2013) APL Mater., 1 | |
dc.relation.references | Momma, K., Izumi, F., (2008) J. Appl. Crystallogr., 41, pp. 653-658 | |
dc.relation.references | Nowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J., (2008) J. Phys. Chem. C, 112, pp. 5275-5300 | |
dc.relation.references | Zhao, H., Pan, F., Li, Y., (2017) J. Mater., 3, pp. 17-32 | |
dc.relation.references | Pan, X., Yang, M.Q., Fu, X., Zhang, N., Xu, Y.J., (2013) Nanoscale, 5, pp. 3601-3614 | |
dc.relation.references | Ortega, Y., Hevia, D.F., Oviedo, J., San-Miguel, M.A., (2014) Appl. Surf. Sci., 294, pp. 42-48 | |
dc.relation.references | Shi, Y., Sun, H., Nguyen, M.C., Wang, C., Ho, K., Saidi, W.A., Zhao, J., (2017) Nanoscale, 9, pp. 11553-11565 | |
dc.relation.references | Han, Y., Liu, C.J., Ge, Q., (2007) J. Phys. Chem. C, 111, pp. 16397-16404 | |
dc.relation.references | Kou, L., Frauenheim, T., Rosa, A.L., Lima, E.N., (2017) J. Phys. Chem. C, 121, pp. 17417-17420 | |
dc.relation.references | Comer, B.M., Lenk, M.H., Rajanala, A.P., Flynn, E.L., Medford, A.J., (2021) Catal. Letters, 151, pp. 1142-1154 | |
dc.relation.references | Wang, V., Xu, N., Liu, J.C., Tang, G., Geng, W.T., (2021) Comput. Phys. Commun., 267 | |
dc.relation.references | Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360 | |
dc.relation.references | Sanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908 | |
dc.relation.references | Tang, W., Sanville, E., Henkelman, G., (2009) J. Phys. Condens. Matter, 21 | |
dc.relation.references | Yu, M., Trinkle, D.R., (2011) J. Chem. Phys., 134 | |
dc.relation.references | O'Connor, C.R., Ma, R., Collinge, G., Lee, M.S., Kimmel, G.A., Dohnálek, Z., (2023) Top. Catal., 66, pp. 1087-1101 | |
dc.relation.references | Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, pp. 19314-19319 | |
dc.relation.references | Setvin, M., Shi, X., Hulva, J., Simschitz, T., Parkinson, G.S., Schmid, M., Di Valentin, C., Diebold, U., (2017) ACS Catal., 7, pp. 7081-7091 | |
dc.relation.references | Tian, F.H., Wang, X., Zhao, W., Zhao, L., Chu, T., Yu, S., (2013) Surf. Sci., 616, pp. 76-84 | |
dc.relation.references | Wu, Y., Gao, F., Wang, H., Kovarik, L., Sudduth, B., Wang, Y., (2021) J. Phys. Chem. C, 125, pp. 3988-4000 | |
dc.relation.references | Yao, M., Ji, Y., Wang, H., Ao, Z., Li, G., An, T., (2017) J. Phys. Chem. C, 121, pp. 13717-13722 | |
dc.relation.references | Varilla, L.A.A., Seriani, N., Montoya, J.A., (2019) J. Mol. Model., 25, p. 231 | |
dc.relation.references | Liu, L., Wang, Z., Pan, C., Xiao, W., Cho, K., (2013) ChemPhysChem, 14, pp. 996-1002 | |
dc.relation.references | Kenmoe, S., Lisovski, O., Piskunov, S., Bocharov, D., Zhukovskii, Y.F., Spohr, E., (2018) J. Phys. Chem. B, 122, pp. 5432-5440 | |
dc.relation.references | Gong, X.Q., Selloni, A., (2005) J. Phys. Chem. B, 109, pp. 19560-19562 | |
dc.relation.references | Rohmann, C., Idriss, H., (2022) J. Phys. Condens. Matter, 34 | |
dc.relation.references | Hirakawa, H., Hashimoto, M., Shiraishi, Y., Hirai, T., (2017) J. Am. Chem. Soc., 139, pp. 10929-10936 | |
dc.relation.references | Xie, X.Y., Xiao, P., Fang, W.H., Cui, G., Thiel, W., (2019) ACS Catal., 9, pp. 9178-9187 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín | |