Show simple item record

dc.contributor.authorMuñoz Peña A.C
dc.contributor.authorFlórez E
dc.contributor.authorNúñez-Zarur F.
dc.date.accessioned2025-04-28T22:10:49Z
dc.date.available2025-04-28T22:10:49Z
dc.date.created2025
dc.identifier.issn21911363
dc.identifier.urihttp://hdl.handle.net/11407/8909
dc.descriptionConversion of glycerol to added-value products is desirable due to its surplus during biodiesel synthesis. TiO2 has been the most explored catalyst. We performed a systematic study of glycerol adsorption on anatase (101), anatase (001), and rutile (110) TiO2 at the Density Functional Theory level. We found several adsorption modes on these surfaces, with anatase (101) being the less reactive one, leading to adsorption energies between −0.8 and −0.4 eV, with all adsorptions molecular in nature. On the contrary, anatase (001) is the most reactive surface, leading to both molecular and dissociative adsorption modes, with energies ranging from −4 to −1 eV and undergoing severe surface reconstructions in some cases. Rutile (110) also shows both molecular and dissociative adsorptions, but it is less reactive than anatase (001). Surfaces with oxygen vacancies affects the adsorbed states and energies. The electronic structure analysis reveals that glycerol adsorption mainly affects the band gap of the material and not the individual contributions to the valence and conduction band. Bader charge analysis shows that strong adsorption modes on anatase (001) and rutile (110) are associated with large charge transfer from glycerol to the surface, while weak and molecular adsorption modes involve low charge transfer. © 2024 The Authors. ChemistryOpen published by Wiley-VCH GmbH.
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85216263219&doi=10.1002%2fopen.202400153&partnerID=40&md5=14b9012ef11d1033b5cac359905e905a
dc.sourceChemistryOpen
dc.sourceChemistryOpen
dc.sourceScopus
dc.subjectab initio calculation
dc.subjectAdsorption energy
dc.subjectGlycerol adsorption
dc.subjectTiO2
dc.subjectTitanium dioxide
dc.subjectGlycerol
dc.subjectMolecular docking
dc.subjectSpecific energy
dc.subjectAb initio calculations
dc.subjectAdsorption energies
dc.subjectAdsorption modes
dc.subjectDFT study
dc.subjectEnergy
dc.subjectGlycerol adsorption
dc.subjectMolecular and dissociative adsorption
dc.subjectPeriodic DFT
dc.subjectTiO 2
dc.subjectTitania
dc.subjectTitanium dioxide
dc.subjectab initio calculation
dc.subjectAdsorption energy
dc.subjectGlycerol adsorption
dc.subjectTiO2
dc.subjectTitanium dioxide
dc.titleGlycerol Adsorption on TiO2 Surfaces: A Systematic Periodic DFT Study
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.type.spaArtículo revisado por pares
dc.identifier.doi10.1002/open.202400153
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationMuñoz Peña, A.C., Chemistry and Biochemistry Department, New Mexico State University, Las Cruces, NM 88001, United States, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia, Departamento de Química, Facultad de Ciencias, Universidad Nacional de, Colombia − Sede Bogotá, Carrera 30 No., 45–03, Bogotá, 111321, Colombia
dc.relation.referencesBraun, M., Santana, C.S., Garcia, A.C., Andronescu, C., (2023) Curr. Opin. Green Sustain. Chem., 41
dc.relation.referencesMohan, K., Pai, S.D.K.R., Reghunath, B.S., Pinheiro, D., (2023) ChemistrySelect, 8
dc.relation.referencesCharles Rajesh Kumar, J., Majid, M.A., (2020) Energy. Sustain. Soc., 10
dc.relation.referencesDecarpigny, C., Aljawish, A., His, C., Fertin, B., Bigan, M., Dhulster, P., Millares, M., Froidevaux, R., (2022) Energies, 15
dc.relation.referencesThanh, L.T., Okitsu, K., Van Boi, L., Maeda, Y., (2012) Catalysts, 2, pp. 191-222
dc.relation.referencesKuo, H.H., Vo, T.G., Hsu, Y.J., (2024) J. Photochem. Photobiol. C Photochem. Rev., 58
dc.relation.referencesPirzadi, Z., Meshkani, F., (2022) Fuel, 329
dc.relation.referencesAnitha, M., Kamarudin, S.K., Kofli, N.T., (2016) Chem. Eng. J., 295, pp. 119-130
dc.relation.referencesCheca, M., Nogales-Delgado, S., Montes, V., Encinar, J.M., (2020) Catalysts, 10, pp. 1-41
dc.relation.referencesLiu, Y., Zhang, B., Yan, D., Xiang, X., (2024) Green Chem., 26, pp. 2505-2524
dc.relation.referencesDodekatos, G., Schünemann, S., Tüysüz, H., (2018) ACS Catal., 8, pp. 6301-6333
dc.relation.referencesTorres, S., Palacio, R., López, D., (2021) Appl. Catal. A Gen., 621
dc.relation.referencesLin, Y.C., (2013) Int. J. Hydrogen Energy, 38, pp. 2678-2700
dc.relation.referencesPires, M.H.M., Passos, F.B., Xing, Y., (2023) Catal. Today, 419
dc.relation.referencesHan, X., Sheng, H., Yu, C., Walker, T.W., Huber, G.W., Qiu, J., Jin, S., (2020) ACS Catal., 10, pp. 6741-6752
dc.relation.referencesVaidya, P.D., Rodrigues, A.E., (2009) Chem. Eng. Technol., 32, pp. 1463-1469
dc.relation.referencesAnastas, P., Eghbali, N., (2010) Chem. Soc. Rev., 39, pp. 301-312
dc.relation.referencesBourikas, K., Kordulis, C., Lycourghiotis, A., (2014) Chem. Rev., 114, pp. 9754-9823
dc.relation.referencesDiebold, U., (2003) Surf. Sci. Rep., 48, pp. 53-229
dc.relation.referencesRinaudo, M.G., Beltrán, A.M., Fernández, A., Cadús, L.E., Morales, M.R., (2022) Results Eng., 16
dc.relation.referencesLópez-Tenllado, F.J., Hidalgo-Carrillo, J., Montes, V., Marinas, A., Urbano, F.J., Marinas, J.M., Ilieva, L., Reid, F., (2017) Catal. Today, 280, pp. 58-64
dc.relation.referencesWu, G., Liu, Y., He, Y., Feng, J., Li, D., (2021) Appl. Catal. B Environ., 291
dc.relation.referencesPanagiotopoulou, P., Karamerou, E.E., Kondarides, D.I., (2013) Catal. Today, 209, pp. 91-98
dc.relation.referencesZhang, X., Gao, M., Yang, P., Cui, X., Liu, Y., Li, D., Feng, J., (2021) J. Porous Mater., 28, pp. 1371-1385
dc.relation.referencesD'Agostino, C., Brett, G., Divitini, G., Ducati, C., Hutchings, G.J., Mantle, M.D., Gladden, L.F., (2017) ACS Catal., 7, pp. 4235-4241
dc.relation.referencesMondach, W., Chanklang, S., Somchuea, P., Witoon, T., Chareonpanich, M., Faungnawakij, K., Sohn, H., Seubsai, A., (2021) Sci. Rep., 11, p. 23042
dc.relation.referencesRojas, N., Hincapié-Triviño, G., Velasquez, M., (2024) Mol. Catal., 566
dc.relation.referencesAugugliaro, V., El Nazer, H.A.H., Loddo, V., Mele, A., Palmisano, G., Palmisano, L., Yurdakal, S., (2010) Catal. Today, 151, pp. 21-28
dc.relation.referencesJedsukontorn, T., Meeyoo, V., Saito, N., Hunsom, M., (2015) Chem. Eng. J., 281, pp. 252-264
dc.relation.referencesHuo, P., Kumar, P., Liu, B., (2018) Catalysts, 8, p. 616
dc.relation.referencesGuo, Q., Ma, Z., Zhou, C., Ren, Z., Yang, X., (2019) Chem. Rev., 119, pp. 11020-11041
dc.relation.referencesCampbell, C.T., Sellers, J.R.V., (2013) Chem. Rev., 113, pp. 4106-4135
dc.relation.referencesWang, R., Wang, B., Abdullahi, A.S., Fan, H., (2024) Wiley Interdiscip. Rev. Comput. Mol. Sci., 14
dc.relation.referencesDohnálek, Z., Lyubinetsky, I., Rousseau, R., (2010) Prog. Surf. Sci., 85, pp. 161-205
dc.relation.referencesCarchini, G., López, N., (2014) Phys. Chem. Chem. Phys., 16, pp. 14750-14760
dc.relation.referencesBabaei, Z., Najafi Chermahini, A., Dinari, M., (2020) J. Colloid Interface Sci., 563, pp. 1-7
dc.relation.referencesJia, F., Zhou, H., Wang, M., (2023) Chem. Commun., 59, pp. 11377-11380
dc.relation.referencesErnzerhof, M., Scuseria, G.E., (1999) J. Chem. Phys., 110, pp. 5029-5036
dc.relation.referencesKresse, G., Hafner, J., (1993) Phys. Rev. B, 47, pp. 558-561
dc.relation.referencesKresse, G., Hafner, J., (1994) Phys. Rev. B, 49, pp. 14251-14269
dc.relation.referencesKresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, pp. 11169-11186
dc.relation.referencesKresse, G., Hafner, J., (1994) J. Phys. Condens. Matter, 6, pp. 8245-8257
dc.relation.referencesJoubert, D., (1999) Phys. Rev. B - Condens. Matter Mater. Phys., 59, pp. 1758-1775
dc.relation.referencesGrimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys., 132
dc.relation.referencesJain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Persson, K.A., (2013) APL Mater., 1
dc.relation.referencesMomma, K., Izumi, F., (2008) J. Appl. Crystallogr., 41, pp. 653-658
dc.relation.referencesNowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J., (2008) J. Phys. Chem. C, 112, pp. 5275-5300
dc.relation.referencesZhao, H., Pan, F., Li, Y., (2017) J. Mater., 3, pp. 17-32
dc.relation.referencesPan, X., Yang, M.Q., Fu, X., Zhang, N., Xu, Y.J., (2013) Nanoscale, 5, pp. 3601-3614
dc.relation.referencesOrtega, Y., Hevia, D.F., Oviedo, J., San-Miguel, M.A., (2014) Appl. Surf. Sci., 294, pp. 42-48
dc.relation.referencesShi, Y., Sun, H., Nguyen, M.C., Wang, C., Ho, K., Saidi, W.A., Zhao, J., (2017) Nanoscale, 9, pp. 11553-11565
dc.relation.referencesHan, Y., Liu, C.J., Ge, Q., (2007) J. Phys. Chem. C, 111, pp. 16397-16404
dc.relation.referencesKou, L., Frauenheim, T., Rosa, A.L., Lima, E.N., (2017) J. Phys. Chem. C, 121, pp. 17417-17420
dc.relation.referencesComer, B.M., Lenk, M.H., Rajanala, A.P., Flynn, E.L., Medford, A.J., (2021) Catal. Letters, 151, pp. 1142-1154
dc.relation.referencesWang, V., Xu, N., Liu, J.C., Tang, G., Geng, W.T., (2021) Comput. Phys. Commun., 267
dc.relation.referencesHenkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
dc.relation.referencesSanville, E., Kenny, S.D., Smith, R., Henkelman, G., (2007) J. Comput. Chem., 28, pp. 899-908
dc.relation.referencesTang, W., Sanville, E., Henkelman, G., (2009) J. Phys. Condens. Matter, 21
dc.relation.referencesYu, M., Trinkle, D.R., (2011) J. Chem. Phys., 134
dc.relation.referencesO'Connor, C.R., Ma, R., Collinge, G., Lee, M.S., Kimmel, G.A., Dohnálek, Z., (2023) Top. Catal., 66, pp. 1087-1101
dc.relation.referencesTilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, pp. 19314-19319
dc.relation.referencesSetvin, M., Shi, X., Hulva, J., Simschitz, T., Parkinson, G.S., Schmid, M., Di Valentin, C., Diebold, U., (2017) ACS Catal., 7, pp. 7081-7091
dc.relation.referencesTian, F.H., Wang, X., Zhao, W., Zhao, L., Chu, T., Yu, S., (2013) Surf. Sci., 616, pp. 76-84
dc.relation.referencesWu, Y., Gao, F., Wang, H., Kovarik, L., Sudduth, B., Wang, Y., (2021) J. Phys. Chem. C, 125, pp. 3988-4000
dc.relation.referencesYao, M., Ji, Y., Wang, H., Ao, Z., Li, G., An, T., (2017) J. Phys. Chem. C, 121, pp. 13717-13722
dc.relation.referencesVarilla, L.A.A., Seriani, N., Montoya, J.A., (2019) J. Mol. Model., 25, p. 231
dc.relation.referencesLiu, L., Wang, Z., Pan, C., Xiao, W., Cho, K., (2013) ChemPhysChem, 14, pp. 996-1002
dc.relation.referencesKenmoe, S., Lisovski, O., Piskunov, S., Bocharov, D., Zhukovskii, Y.F., Spohr, E., (2018) J. Phys. Chem. B, 122, pp. 5432-5440
dc.relation.referencesGong, X.Q., Selloni, A., (2005) J. Phys. Chem. B, 109, pp. 19560-19562
dc.relation.referencesRohmann, C., Idriss, H., (2022) J. Phys. Condens. Matter, 34
dc.relation.referencesHirakawa, H., Hashimoto, M., Shiraishi, Y., Hirai, T., (2017) J. Am. Chem. Soc., 139, pp. 10929-10936
dc.relation.referencesXie, X.Y., Xiao, P., Fang, W.H., Cui, G., Thiel, W., (2019) ACS Catal., 9, pp. 9178-9187
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record