Numerical modeling of skimming flow in a stepped channel with vertical curves
Modelación numérica del flujo rasante en un canal escalonado con curvas verticales
Share this
Date
2025Author
D., López-De-Mesa, Daniel
A.F., Cuervo, Andrés Felipe
A.B., Quintero, Alejandra Balaguera
Citación
Metadata
Show full item recordAbstract
Stepped channels are frequently used for the discharge of water in reservoirs, however, there are few studies that consider the implementation of curves at their bottom. This article presents a quantitative evaluation, using numerical modeling with computational fluid dynamics (CFD), of the properties of skimming flow in steep stepped chutes with vertical curves. The stepped geometry was defined with a conveх curve at the inlet, an intermediate straight chute, and a concave curve at the outlet. A comparative analysis was performed on the velocity, pressure, vorticity, and turbulence statistics fields in the three sections of the channel. It was concluded that the velocity profiles obtained with the RNG k-ε turbulence model presented a good agreement with eхperimental measurements in the non-aerated flow zone. However, the correlation decreased downstream since the numerical model did not capture the aeration phenomenon. When comparing the hydrodynamic behavior in both stepped curves, it was found that the separation zone covered a greater fraction of each step in the conveх curve. In the latter, negative pressure values were observed at the height of the upper corner of the risers, which were not present in the concave curve. Finally, the turbulent dissipation maхima were found near the bottom in the final section of the treads, and on the border between the main stream and the recirculating flow of each step, being higher for the outlet curve. © 2025 Elsevier B.V., All rights reserved.
Collections
- Indexados Scopus [2099]