REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

Thumbnail
Share this
Date
2025
Author
Al-Mahmud S.
Cano J.A.
Campo E.A.
Weyers S.

Citación

       
TY - GEN T1 - Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms Y1 - 2025 UR - http://hdl.handle.net/11407/9131 AB - Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for garments. This complex process involves challenging decision-making due to order specifications and production constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic algorithms, and commercial solvers. Two different solution approaches are proposed and tested through experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO and GA for larger orders where commercial solvers may not provide a solution. © 2025 Universidad Politecnica de Valencia. All rights reserved. ER - @misc{11407_9131, author = {}, title = {Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms}, year = {2025}, abstract = {Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for garments. This complex process involves challenging decision-making due to order specifications and production constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic algorithms, and commercial solvers. Two different solution approaches are proposed and tested through experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO and GA for larger orders where commercial solvers may not provide a solution. © 2025 Universidad Politecnica de Valencia. All rights reserved.}, url = {http://hdl.handle.net/11407/9131} }RT Generic T1 Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms YR 2025 LK http://hdl.handle.net/11407/9131 AB Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for garments. This complex process involves challenging decision-making due to order specifications and production constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic algorithms, and commercial solvers. Two different solution approaches are proposed and tested through experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO and GA for larger orders where commercial solvers may not provide a solution. © 2025 Universidad Politecnica de Valencia. All rights reserved. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for garments. This complex process involves challenging decision-making due to order specifications and production constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic algorithms, and commercial solvers. Two different solution approaches are proposed and tested through experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO and GA for larger orders where commercial solvers may not provide a solution. © 2025 Universidad Politecnica de Valencia. All rights reserved.
URI
http://hdl.handle.net/11407/9131
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com