REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum Computation of the Cobb–Douglas Utility Function via the 2D Clairaut Differential Equation

Thumbnail
Share this
Date
2025
Author
Betancur-Hinestroza I.C.
Velásquez-Sierra É.A.
Caro-Lopera F.J.
Bedoya-Calle Á.H.

Citación

       
TY - GEN T1 - Quantum Computation of the Cobb–Douglas Utility Function via the 2D Clairaut Differential Equation Y1 - 2025 UR - http://hdl.handle.net/11407/9132 AB - This paper introduces the integration of the Cobb–Douglas (CD) utility model with quantum computation using the Clairaut-type differential formula. We propose a novel economic–physical model employing envelope theory to establish a link with quantum entanglement, defining emergent probabilities in the optimal utility function for two goods within a given expenditure limit. The study explores the interaction between the CD model and quantum computation, emphasizing system entropy and Clairaut differential equations in understanding utility’s optimal envelopes. Algorithms using the 2D Clairaut equation are introduced for the quantum formulation of the CD function, showcasing representation in quantum circuits for one and two qubits. Our findings, validated through IBM-Q simulations, align with the predictions, demonstrating the robustness of our approach. This methodology articulates the utility–budget relationship through envelope representation, where normalized intercepts signify probabilities. The precision of our results, especially in modeling quantum entanglement, surpasses that of IBM-Q simulations, which require extensive iterations for similar accuracy. © 2024 by the authors. ER - @misc{11407_9132, author = {}, title = {Quantum Computation of the Cobb–Douglas Utility Function via the 2D Clairaut Differential Equation}, year = {2025}, abstract = {This paper introduces the integration of the Cobb–Douglas (CD) utility model with quantum computation using the Clairaut-type differential formula. We propose a novel economic–physical model employing envelope theory to establish a link with quantum entanglement, defining emergent probabilities in the optimal utility function for two goods within a given expenditure limit. The study explores the interaction between the CD model and quantum computation, emphasizing system entropy and Clairaut differential equations in understanding utility’s optimal envelopes. Algorithms using the 2D Clairaut equation are introduced for the quantum formulation of the CD function, showcasing representation in quantum circuits for one and two qubits. Our findings, validated through IBM-Q simulations, align with the predictions, demonstrating the robustness of our approach. This methodology articulates the utility–budget relationship through envelope representation, where normalized intercepts signify probabilities. The precision of our results, especially in modeling quantum entanglement, surpasses that of IBM-Q simulations, which require extensive iterations for similar accuracy. © 2024 by the authors.}, url = {http://hdl.handle.net/11407/9132} }RT Generic T1 Quantum Computation of the Cobb–Douglas Utility Function via the 2D Clairaut Differential Equation YR 2025 LK http://hdl.handle.net/11407/9132 AB This paper introduces the integration of the Cobb–Douglas (CD) utility model with quantum computation using the Clairaut-type differential formula. We propose a novel economic–physical model employing envelope theory to establish a link with quantum entanglement, defining emergent probabilities in the optimal utility function for two goods within a given expenditure limit. The study explores the interaction between the CD model and quantum computation, emphasizing system entropy and Clairaut differential equations in understanding utility’s optimal envelopes. Algorithms using the 2D Clairaut equation are introduced for the quantum formulation of the CD function, showcasing representation in quantum circuits for one and two qubits. Our findings, validated through IBM-Q simulations, align with the predictions, demonstrating the robustness of our approach. This methodology articulates the utility–budget relationship through envelope representation, where normalized intercepts signify probabilities. The precision of our results, especially in modeling quantum entanglement, surpasses that of IBM-Q simulations, which require extensive iterations for similar accuracy. © 2024 by the authors. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
This paper introduces the integration of the Cobb–Douglas (CD) utility model with quantum computation using the Clairaut-type differential formula. We propose a novel economic–physical model employing envelope theory to establish a link with quantum entanglement, defining emergent probabilities in the optimal utility function for two goods within a given expenditure limit. The study explores the interaction between the CD model and quantum computation, emphasizing system entropy and Clairaut differential equations in understanding utility’s optimal envelopes. Algorithms using the 2D Clairaut equation are introduced for the quantum formulation of the CD function, showcasing representation in quantum circuits for one and two qubits. Our findings, validated through IBM-Q simulations, align with the predictions, demonstrating the robustness of our approach. This methodology articulates the utility–budget relationship through envelope representation, where normalized intercepts signify probabilities. The precision of our results, especially in modeling quantum entanglement, surpasses that of IBM-Q simulations, which require extensive iterations for similar accuracy. © 2024 by the authors.
URI
http://hdl.handle.net/11407/9132
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com