Mostrar el registro sencillo del ítem

dc.creatorBerrio-Betancur L.F., Echeverry-Rendón M., Correa-Bedoya E., Zuleta-Gil A.A., Robledo-Restrepo S.M., Castaño-Gonzalez J.G., Echeverría-Echeverría F.spa
dc.date.accessioned2018-04-13T16:30:59Z
dc.date.available2018-04-13T16:30:59Z
dc.date.created2017
dc.identifier.issn127353
dc.identifier.urihttp://hdl.handle.net/11407/4522
dc.description.abstractMagnesium and its alloys are some of the materials that have had notable growing progress in recent years. This interest in magnesium base alloys is due to both, its physical and mechanical properties, as well as the search for alternatives to less polluting materials. In order to provide an overview of the possibilities that the use of this material has in the domestic industry, this work gives a look at the basic aspects of the material and the processes of obtaining; its most promising applications and with potential to be developed in Colombia. Finally, the authors discuss their research and results on this material, seeking to be employed as inputs for the implementation of processes and products at the commercial level. © The author; licensee Universidad Nacional de Colombia.eng
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85032961910&doi=10.15446%2fdyna.v84n203.66440&partnerID=40&md5=96974bdedd3d879ce8b939602cb6d714spa
dc.sourceScopusspa
dc.titleDevelopment of the magnesium alloy industry in Colombia - an opportunity [Desarrollo de la industria de aleaciones de magnesio en Colombia - una oportunidad]spa
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.contributor.affiliationCentro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Grupo de Investigación Materiales con Impacto -MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia; Grupo de Investigación de Estudios en Diseñ-GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Medellín, Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombiaspa
dc.identifier.doi10.15446/dyna.v84n203.66440
dc.subject.keywordMagnesium; Magnesium applications; Magnesium sustainability; Magnesium synthesiseng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.abstractMagnesium and its alloys are some of the materials that have had notable growing progress in recent years. This interest in magnesium base alloys is due to both, its physical and mechanical properties, as well as the search for alternatives to less polluting materials. In order to provide an overview of the possibilities that the use of this material has in the domestic industry, this work gives a look at the basic aspects of the material and the processes of obtaining; its most promising applications and with potential to be developed in Colombia. Finally, the authors discuss their research and results on this material, seeking to be employed as inputs for the implementation of processes and products at the commercial level. © The author; licensee Universidad Nacional de Colombia.eng
dc.creator.affiliationBerrio-Betancur, L.F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Echeverry-Rendón, M., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Correa-Bedoya, E., Grupo de Investigación Materiales con Impacto -MAT&MPAC, Facultad de Ingenierías, Universidad de Medellín, Medellín, Colombia; Zuleta-Gil, A.A., Grupo de Investigación de Estudios en Diseñ-GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana, Sede Medellín, Medellín, Colombia; Robledo-Restrepo, S.M., Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Castaño-Gonzalez, J.G., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia; Echeverría-Echeverríaa, F., Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombiaspa
dc.relation.ispartofesDYNA (Colombia)spa
dc.relation.referencesBell, T., (2017) Learn about magnesium, , https://www.thebalance.com/metal-profile-magnesium-2340142, Accessed: 20-Jan-2017; https://minerals.usgs.gov/, USGS Mineral Resources Program. [Online]. [Accessed: 20-Jan-2017]; http://www.intlmag.org/, International Magnesium Association. [Online]. [Accessed: 20-Jan-2017]; Polmear, I.J., (1995) Light alloys: Metallurgy of the light metals, Third, , Londres: J. Wiley & Sons; Kainer, K.U., (2000) Magnesium alloys and technology, , Weinheim: WILEY-VCH Verlag GmbH; Shaw, B.A., Corrosion resistance of magnesium alloys (2003) ASM Handb., 13, pp. 692-696; Peloubet, J.A., (2012) Machining magnesium, Magnesium Technology Centre, , Swinton, Manchester; http://www.chinamagnesiumcorporation.com/our-business/the-pidgeon-process, China Magnesium Corporation, The Pidgeon Process, 2011. [Online]. [Accessed: 20-Jan-2017]; Mihriban, M.O., Pekgüleryüz, O., Kainer, K.U., Kaya, A.A., (2013) Fundamentals of magnesium alloy metallurgy; Abdel-aal, H.K., Prospects for the role of magnesium in solar-hydrogen energy-system (2014) Science Direct, 40 (3), pp. 1408-1413; Wilkomirsky, I., (2009) Metalurgia extractiva de metales no ferrosos; (2003) Subdirección de Planeación Minera. Mercado de los insumos minerales para la producción de fertilizantes, , www.upme.gov.co/mineria/EstudiosYAnalisisSectoriales/MineralesFertilizantesColombia.pdf, Accessed: 20-Jan-2017; http://vitalsigns.worldwatch.org/, Vital Signs Online. [Online]. [Accessed: 20-Jan-2017]; Monteiro, W.A., Buso, S.J., Da, L.V., Application of magnesium alloys in transport (2012) New Features on Magnesium Alloys, , InTech; Vormann, J., Magnesium: Nutrition and metabolism (2003) Mol. Aspects Med., 24 (1-3), pp. 27-37; Homayun, B., Afshar, A., Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials (2014) J. Alloys Compd., 607, pp. 1-10; Jang, Y., Tan, Z., Jurey, C., Collins, B., Badve, A., Dong, Z., Park, C., Yun, Y., Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant (2014) Mater. Sci. Eng. C. Mater. Biol. Appl., 45, pp. 45-55; Song, G., Control of biodegradation of biocompatable magnesium alloys (2007) Corros. Sci., 49 (4), pp. 1696-1701; Luthringer, B.J.C., Feyerabend, F., Willumeit-römer, R., (2014) Magnesium-based implants: A mini-review, Magnesium Research, 27 (4), pp. 142-154; Shimizu, Y., Yamamoto, A., Mukai, T., Shirai, Y., Kano, M., Kudo, T., Kanetaka, H., Kikuchi, M., Medical application of magnesium and its alloys as degradable biomaterials (2009) Interface Oral Heal. Sci., pp. 318-320; Brown, B.K., (2014) Wheelchairs & Assistive Devices | CURRENT Diagnosis & Treatment: Physical Medicine & Rehabilitation | AccessMedicine | McGraw-Hill Medical, , https://accessmedicine.mhmedical.com/content.aspx?bookid=1180&sectionid=70383529, Accessed: 15-Sep-2017; http://intlmag.site-ym.com/?page=app_electronic_ima, Electronic Applications - International Magnesium Association. [Online]. [Accessed: 20-Jan-2017]; http://www.intlmag.org/page/mg_applications_ima, Magnesium applications - International Magnesium Association. [Online]. [Accessed: 20-Jan-2017]; http://www.cnrcop.es/gc/iniciativas-no-gubernamentales/mejores-tecnicas-disponibles-mtd-y-mejores-practicas-ambientales-mpa/mejores-tecnicas-disponibles-mtd-y-mejores-practicas-ambientales-mpa/procesos-termicos-de-la-industria-metalurgica-no-mencionados-e, CNR COP, Producción de magnesio. [en línea]. [consultado en: 11-Sep-2017]; Rauch, S., Rauch fertigungstechnik: Low-pressure casting Al | Mg, , http://www.rauch-ft.com/en/non-ferrous-metals/low-pressure-casting-al-mg/, Accessed: 11-Sep-2017; O’Donnel, R.L., Advanced thixotropic metallurgy, a revolution in casting technology (2005) Die Cast. Eng., 49 (1), pp. 50-54; Meridian Lightweight Technologies: Magnesium automotive solutions, , http://www.meridian-mag.com/, Accessed: 20-Jan-2017; Talha, M., Behera, C.K., Sinha, O.P., A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications (2013) Mater. Sci. Eng. C, 33 (7), pp. 3563-3575; Zhu, Y., Yang, K., Cheng, R., Xiang, Y., Yuan, T., Cheng, Y., Sarmento, B., Cui, W., The current status of biodegradable stent to treat benign luminal disease (2017) Mater. Today, , May; Tan, L., Yu, X., Wan, P., Yang, K., Biodegradable materials for bone repairs: A review (2013) J. Mater. Sci. Technol., 29 (6), pp. 503-513; Liu, C.L., Wang, Y.J., Zeng, R.C., Zhang, X.M., Huang, W.J., Chu, P.K., In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin (2010) Corros. Sci., 52 (10), pp. 3341-3347; Witte, F., Fischer, J., Nellesen, J., Crostack, H.-A., Kaese, V., Pisch, A., Beckmann, F., Windhagen, H., In vitro and in vivo corrosion measurements of magnesium alloys (2006) Biomaterials, 27 (7), pp. 1013-1018; Abidin, N.I.Z., Da Forno, A., Bestetti, M., Martin, D., Beer, A., Atrens, A., Evaluation of coatings for Mg alloys for biomedical applications (2014) Advanced Engineering Materials, 17 (1), pp. 58-67; Hussein, R.O., Nie, X., Northwood, D.O., An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing (2013) Electrochim. Acta, 112, pp. 111-119; Ghasemi, A., Raja, V.S., Blawert, C., Dietzel, W., Kainer, K.U., The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings (2010) Surf. Coatings Technol., 204 (9-10), pp. 1469-1478; Peibo, S., Xiaohong, W., Zhaohua, J., Plasma electrolytic oxidation of a low friction casting on ZK60 magnesium alloy (2008) Mater. Lett., 62 (17-18), pp. 3124-3126; Pezzato, L., Brunelli, K., Gross, S., Magrini, M., Dabalà, M., Effect of process parameters of plasma electrolytic oxidation on microstructure and corrosion properties of magnesium alloys (2014) J. Appl. Electrochem., 44 (7), pp. 867-879; Stojadinović, S., Vasilić, R., Petković, M., Kasalica, B., Belča, I., Žekić, A., Zeković, L., Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate (2013) Appl. Surf. Sci., 265, pp. 226-233; Mori, Y., Koshi, A., Liao, J., Asoh, H., Ono, S., Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes (2014) Corros. Sci., 88, pp. 254-262; Liu, Y., Yang, F., Zhang, Z., Zuo, G., Plasma electrolytic oxidation of AZ91D magnesium alloy in biosafety electrolyte for the surgical implant purpose, Russ (2013) J. Electrochem., 49 (10), pp. 987-993; Aliasghari, S., Skeldon, P., Thompson, G.E., Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings (2014) Appl. Surf. Sci., 316, pp. 463-476; Hornberger, H., Virtanen, S., Boccaccini, A.R., Biomedical coatings on magnesium alloys - a review (2012) Acta Biomater., 8 (7), pp. 2442-2455; Dong, H., (2010) Surface engineering of light alloys ight alloys, , CRC Press; Carter, V.E., (1977) Metallic coatings for corrosion control, First, , London, Butterworth & Co; Mallory, G.O., Hajdu, J.B., (1990) Electroless plating -fundamentals and applications, , William Andrew Publishing/Noyes; Correa, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., Coating development during electroless Ni-B plating on magnesium and AZ91D alloy (2013) Surf. Coatings Technol., 232, pp. 784-794; Zuleta, A.A., Correa, E., Sepúlveda, M., Guerra, L., Castaño, J.G., Echeverría, F., Skeldon, P., Thompson, G.E., Effect of NH4HF2 on deposition of alkaline electroless Ni-P coatings as a chromium-free pre-treatment for magnesium (2012) Corros. Sci., 55, pp. 194-200; Calderón, J.A., Jiménez, P.J., Zuleta, A.A., Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings Surf. Coatings; Correa, E., Zuleta, A.A., Guerra, L., Gómez, M.A., Castaño, J.G., Echeverría, F., Liu, H., Thompson, G.E., (2013) Tribological behavior of electroless Ni-B coatings on magnesium and AZ91D alloy, Wear, 305 (1-2), pp. 115-123; Udhayakumar, G., Muthukumarasamy, N., Velauthapillai, D., Santhosh, S.B., Asokan, V., Magnesium incorporated hydroxyapatite nanoparticles: Preparation, characterization, arvicidal activity (2016) Arab. J. Chem., , Junspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem